Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality

  1. Angela Kim
  2. Joseph C Madara
  3. Chen Wu
  4. Mark L Andermann
  5. Bradford B Lowell  Is a corresponding author
  1. Beth Israel Deaconess Medical Center, United States

Abstract

Water balance, tracked by extracellular osmolality, is regulated by feedback and feedforward mechanisms. Feedback regulation is reactive, occurring as deviations in osmolality are detected. Feedforward or presystemic regulation is proactive, occurring when disturbances in osmolality are anticipated. Vasopressin (AVP) is a key hormone regulating water balance and is released during hyperosmolality to limit renal water excretion. AVP neurons are under feedback and feedforward regulation. Not only do they respond to disturbances in blood osmolality, but they are also rapidly suppressed and stimulated, respectively, by drinking and eating, which will ultimately decrease and increase osmolality. Here, we demonstrate that AVP neuron activity is regulated by multiple anatomically- and functionally-distinct neural circuits. Notably, presystemic regulation during drinking and eating are mediated by non-overlapping circuits that involve the lamina terminalis and hypothalamic arcuate nucleus, respectively. These findings reveal neural mechanisms that support differential regulation of AVP release by diverse behavioral and physiological stimuli.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Angela Kim

    Medicine, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9475-0798
  2. Joseph C Madara

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chen Wu

    Medicine, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark L Andermann

    Department of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9882-933X
  5. Bradford B Lowell

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    For correspondence
    blowell@bidmc.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0436-3760

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (F31 DK109575)

  • Angela Kim

Pew Charitable Trusts (Pew Scholar Award)

  • Mark L Andermann

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK075632)

  • Bradford B Lowell

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK096010)

  • Bradford B Lowell

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK089044)

  • Bradford B Lowell

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK111401)

  • Bradford B Lowell

National Institute of Diabetes and Digestive and Kidney Diseases (P30 DK046200)

  • Bradford B Lowell

National Institute of Diabetes and Digestive and Kidney Diseases (DP2 DK105570)

  • Mark L Andermann

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK109930)

  • Mark L Andermann

McKnight Foundation (McKnight Scholar Award)

  • Mark L Andermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard D Palmiter, Howard Hughes Medical Institute, University of Washington, United States

Ethics

Animal experimentation: All animal care and experimental procedures were approved in advance by the National Institute of Health and Beth Israel Deaconess Medical Center Institutional Animal Care and Use Committee.

Version history

  1. Received: January 16, 2021
  2. Preprint posted: January 27, 2021 (view preprint)
  3. Accepted: September 28, 2021
  4. Accepted Manuscript published: September 29, 2021 (version 1)
  5. Version of Record published: November 18, 2021 (version 2)

Copyright

© 2021, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,756
    views
  • 313
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angela Kim
  2. Joseph C Madara
  3. Chen Wu
  4. Mark L Andermann
  5. Bradford B Lowell
(2021)
Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality
eLife 10:e66609.
https://doi.org/10.7554/eLife.66609

Share this article

https://doi.org/10.7554/eLife.66609

Further reading

    1. Medicine
    Tumininu S Faniyan, Xinyi Zhang ... Kavaljit H Chhabra
    Short Report

    The kidneys facilitate energy conservation through reabsorption of nutrients including glucose. Almost all the filtered blood glucose is reabsorbed by the kidneys. Loss of glucose in urine (glycosuria) is offset by an increase in endogenous glucose production to maintain normal energy supply in the body. How the body senses this glucose loss and consequently enhances glucose production is unclear. Using renal Slc2a2 (also known as Glut2) knockout mice, we demonstrate that elevated glycosuria activates the hypothalamic-pituitary-adrenal axis, which in turn drives endogenous glucose production. This phenotype was attenuated by selective afferent renal denervation, indicating the involvement of the afferent nerves in promoting the compensatory increase in glucose production. In addition, through plasma proteomics analyses we observed that acute phase proteins - which are usually involved in the body’s defense mechanisms against a threat – were the top candidates which were either upregulated or downregulated in renal Slc2a2 KO mice. Overall, afferent renal nerves contribute to promoting endogenous glucose production in response to elevated glycosuria and loss of glucose in urine is sensed as a biological threat in mice. These findings may be useful in improving the efficiency of drugs like SGLT2 inhibitors that are intended to treat hyperglycemia by enhancing glycosuria but are met with a compensatory increase in endogenous glucose production.

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.