T cell stiffness is enhanced upon formation of immunological synapse

  1. Philipp Jung
  2. Xiangda Zhou
  3. Sandra Iden
  4. Markus Bischoff
  5. Bin Qu  Is a corresponding author
  1. Saarland University, Germany

Abstract

T cells are activated by target cells via an intimate contact, termed immunological synapse (IS). Cellular mechanical properties, especially stiffness, are essential to regulate cell functions. However, T cell stiffness at a subcellular level at the IS still remains largely elusive. In this work, we established an atomic force microscopy (AFM)-based elasticity mapping method on whole T cells to obtain an overview of the stiffness with a resolution of ~ 60 nm. Using primary human CD4+ T cells, we show that when T cells form IS with stimulating antibody-coated surfaces, the lamellipodia are stiffer than the cell body. Upon IS formation, T cell stiffness is enhanced both at the lamellipodia and on the cell body. Chelation of intracellular Ca2+ abolishes IS-induced stiffening at the lamellipodia but has no influence on cell body-stiffening, suggesting different regulatory mechanisms of IS-induced stiffening at the lamellipodia and the cell body.

Data availability

All data generated or analysed during this study are included in the manuscript, figure supplements or source data files. All files are uploaded.

Article and author information

Author details

  1. Philipp Jung

    Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiangda Zhou

    Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra Iden

    Saarland University, Homberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Markus Bischoff

    Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Bin Qu

    Biophysics, Saarland University, Homburg, Germany
    For correspondence
    bin.qu@uks.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9382-3203

Funding

Deutsche Forschungsgemeinschaft (SFB1027 A2)

  • Bin Qu

Deutsche Forschungsgemeinschaft (SFB1027 B2)

  • Markus Bischoff

Deutsche Forschungsgemeinschaft (SPP1782 ID79/2-2)

  • Sandra Iden

Leibniz-Gemeinschaft (INM Fellowship)

  • Bin Qu

Deutsche Forschungsgemeinschaft (SFB1027 A12)

  • Sandra Iden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alphee Michelot, Institut de Biologie du Développement, France

Publication history

  1. Preprint posted: January 8, 2021 (view preprint)
  2. Received: January 18, 2021
  3. Accepted: July 26, 2021
  4. Accepted Manuscript published: July 27, 2021 (version 1)
  5. Version of Record published: August 12, 2021 (version 2)

Copyright

© 2021, Jung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,114
    Page views
  • 191
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philipp Jung
  2. Xiangda Zhou
  3. Sandra Iden
  4. Markus Bischoff
  5. Bin Qu
(2021)
T cell stiffness is enhanced upon formation of immunological synapse
eLife 10:e66643.
https://doi.org/10.7554/eLife.66643

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Nathanael A Caveney et al.
    Short Report

    Interleukin 27 (IL-27) is a heterodimeric cytokine that functions to constrain T cell-mediated inflammation and plays an important role in immune homeostasis. Binding of IL-27 to cell surface receptors IL-27Rα and gp130 results in activation of receptor-associated Janus Kinases and nuclear translocation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT3 transcription factors. Despite the emerging therapeutic importance of this cytokine axis in cancer and autoimmunity, a molecular blueprint of the IL-27 receptor signaling complex, and its relation to other gp130/IL-12 family cytokines, is currently unclear. We used cryogenic-electron microscopy to determine the quaternary structure of IL-27, composed of p28 and Ebi3 subunits, bound to receptors, IL-27Rα and gp130. The resulting 3.47 Å resolution structure revealed a three-site assembly mechanism nucleated by the central p28 subunit of the cytokine. The overall topology and molecular details of this binding are reminiscent of IL-6 but distinct from related heterodimeric cytokines IL-12 and IL-23. These results indicate distinct receptor assembly mechanisms used by heterodimeric cytokines with important consequences for targeted agonism and antagonism of IL-27 signaling.

    1. Developmental Biology
    2. Immunology and Inflammation
    David J Turner et al.
    Short Report Updated

    To identify roles of RNA binding proteins (RBPs) in the differentiation or survival of antibody secreting plasma cells we performed a CRISPR/Cas9 knockout screen of 1213 mouse RBPs for their ability to affect proliferation and/or survival, and the abundance of differentiated CD138 + cells in vitro. We validated the binding partners CSDE1 and STRAP as well as the m6A binding protein YTHDF2 as promoting the accumulation of CD138 + cells in vitro. We validated the EIF3 subunits EIF3K and EIF3L and components of the CCR4-NOT complex as inhibitors of CD138 + cell accumulation in vitro. In chimeric mouse models YTHDF2-deficient plasma cells failed to accumulate.