A novel gene ZNF862 causes hereditary gingival fibromatosis

  1. Juan Wu
  2. Dongna Chen
  3. Hui Huang
  4. Ning Luo
  5. Huishuang Chen
  6. Junjie Zhao
  7. Yanyan Wang
  8. Tian Zhao
  9. Siyuan Huang
  10. Yang Ren
  11. Teng Zhai
  12. Weibin Sun
  13. Houxuan Li  Is a corresponding author
  14. Wei Li  Is a corresponding author
  1. Medical School of Nanjing University, China
  2. BGI Genomics, China
  3. Peking University, China

Abstract

Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis which is featured as a localized or generalized overgrowth of gingivae. Currently two genes (SOS1 and REST), as well as four loci (2p22.1, 2p23.3-p22.3, 5q13-q22, and 11p15), have been identified as associated with HGF in a dominant inheritance pattern. Here we report thirteen individuals with autosomal-dominant HGF from a four-generation Chinese family. Whole-exome sequencing followed by further genetic co-segregation analysis was performed for the family members across three generations. A novel heterozygous missense mutation (c.2812G>A) in zinc finger protein 862 gene (ZNF862) was identified, and it is absent among the population as per the Genome Aggregation Database. The functional study supports a biological role of ZNF862 for increasing the profibrotic factors particularly COL1A1 synthesis and hence resulting in HGF. Here for the first time we identify the physiological role of ZNF862 for the association with the HGF.

Data availability

The sequencing data supporting this study have been deposited in the China Genebank Nucleotide Sequence Archive (https://db.cngb.org/cnsa, accession number CNP0000995).

Article and author information

Author details

  1. Juan Wu

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  2. Dongna Chen

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Dongna Chen, is employee of BGI Genomics..
  3. Hui Huang

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Hui Huang, is employee of BGI Genomics..
  4. Ning Luo

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  5. Huishuang Chen

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Huishuang Chen, is employee of BGI Genomics..
  6. Junjie Zhao

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  7. Yanyan Wang

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Yanyan Wang, is employee of BGI Genomics..
  8. Tian Zhao

    Department of Periodontology, Medical School of Nanjing University, shenzhen, China
    Competing interests
    No competing interests declared.
  9. Siyuan Huang

    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    No competing interests declared.
  10. Yang Ren

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  11. Teng Zhai

    Clinical research, BGI Genomics, shenzhen, China
    Competing interests
    Teng Zhai, is employee of BGI Genomics..
  12. Weibin Sun

    Department of Periodontology, Medical School of Nanjing University, shenzhen, China
    Competing interests
    No competing interests declared.
  13. Houxuan Li

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    For correspondence
    lihouxuan3435_0@163.com
    Competing interests
    No competing interests declared.
  14. Wei Li

    Clinical Research, BGI Genomics, Shen zhen, China
    For correspondence
    liwei10@genomics.cn
    Competing interests
    Wei Li, is employee of BGI Genomics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4475-531X

Funding

National Natural Science Foundation of China (51772144)

  • Houxuan Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The usage and handling of human samples in this study was approved by the Institutional Review Board on Bioethics and Biosafety of BGI (IRB No. 19059) and the written informed consent obtained from each participant. Clinical investigation was performed in accordance with the Declaration of Helsinki.

Copyright

© 2022, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 799
    views
  • 160
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Wu
  2. Dongna Chen
  3. Hui Huang
  4. Ning Luo
  5. Huishuang Chen
  6. Junjie Zhao
  7. Yanyan Wang
  8. Tian Zhao
  9. Siyuan Huang
  10. Yang Ren
  11. Teng Zhai
  12. Weibin Sun
  13. Houxuan Li
  14. Wei Li
(2022)
A novel gene ZNF862 causes hereditary gingival fibromatosis
eLife 11:e66646.
https://doi.org/10.7554/eLife.66646

Share this article

https://doi.org/10.7554/eLife.66646

Further reading

    1. Genetics and Genomics
    Wenjing Liu, Shujin Li ... Xianjun Zhu
    Research Article

    Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.

    1. Developmental Biology
    2. Genetics and Genomics
    Mitchell Bestry, Alexander N Larcombe ... David Martino
    Research Article

    Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.