A novel gene ZNF862 causes hereditary gingival fibromatosis

  1. Juan Wu
  2. Dongna Chen
  3. Hui Huang
  4. Ning Luo
  5. Huishuang Chen
  6. Junjie Zhao
  7. Yanyan Wang
  8. Tian Zhao
  9. Siyuan Huang
  10. Yang Ren
  11. Teng Zhai
  12. Weibin Sun
  13. Houxuan Li  Is a corresponding author
  14. Wei Li  Is a corresponding author
  1. Medical School of Nanjing University, China
  2. BGI Genomics, China
  3. Peking University, China

Abstract

Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis which is featured as a localized or generalized overgrowth of gingivae. Currently two genes (SOS1 and REST), as well as four loci (2p22.1, 2p23.3-p22.3, 5q13-q22, and 11p15), have been identified as associated with HGF in a dominant inheritance pattern. Here we report thirteen individuals with autosomal-dominant HGF from a four-generation Chinese family. Whole-exome sequencing followed by further genetic co-segregation analysis was performed for the family members across three generations. A novel heterozygous missense mutation (c.2812G>A) in zinc finger protein 862 gene (ZNF862) was identified, and it is absent among the population as per the Genome Aggregation Database. The functional study supports a biological role of ZNF862 for increasing the profibrotic factors particularly COL1A1 synthesis and hence resulting in HGF. Here for the first time we identify the physiological role of ZNF862 for the association with the HGF.

Data availability

The sequencing data supporting this study have been deposited in the China Genebank Nucleotide Sequence Archive (https://db.cngb.org/cnsa, accession number CNP0000995).

Article and author information

Author details

  1. Juan Wu

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  2. Dongna Chen

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Dongna Chen, is employee of BGI Genomics..
  3. Hui Huang

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Hui Huang, is employee of BGI Genomics..
  4. Ning Luo

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  5. Huishuang Chen

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Huishuang Chen, is employee of BGI Genomics..
  6. Junjie Zhao

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  7. Yanyan Wang

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Yanyan Wang, is employee of BGI Genomics..
  8. Tian Zhao

    Department of Periodontology, Medical School of Nanjing University, shenzhen, China
    Competing interests
    No competing interests declared.
  9. Siyuan Huang

    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    No competing interests declared.
  10. Yang Ren

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  11. Teng Zhai

    Clinical research, BGI Genomics, shenzhen, China
    Competing interests
    Teng Zhai, is employee of BGI Genomics..
  12. Weibin Sun

    Department of Periodontology, Medical School of Nanjing University, shenzhen, China
    Competing interests
    No competing interests declared.
  13. Houxuan Li

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    For correspondence
    lihouxuan3435_0@163.com
    Competing interests
    No competing interests declared.
  14. Wei Li

    Clinical Research, BGI Genomics, Shen zhen, China
    For correspondence
    liwei10@genomics.cn
    Competing interests
    Wei Li, is employee of BGI Genomics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4475-531X

Funding

National Natural Science Foundation of China (51772144)

  • Houxuan Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The usage and handling of human samples in this study was approved by the Institutional Review Board on Bioethics and Biosafety of BGI (IRB No. 19059) and the written informed consent obtained from each participant. Clinical investigation was performed in accordance with the Declaration of Helsinki.

Copyright

© 2022, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 859
    views
  • 180
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Wu
  2. Dongna Chen
  3. Hui Huang
  4. Ning Luo
  5. Huishuang Chen
  6. Junjie Zhao
  7. Yanyan Wang
  8. Tian Zhao
  9. Siyuan Huang
  10. Yang Ren
  11. Teng Zhai
  12. Weibin Sun
  13. Houxuan Li
  14. Wei Li
(2022)
A novel gene ZNF862 causes hereditary gingival fibromatosis
eLife 11:e66646.
https://doi.org/10.7554/eLife.66646

Share this article

https://doi.org/10.7554/eLife.66646

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Genetics and Genomics
    Thomas J O'Brien, Ida L Barlow ... André EX Brown
    Research Article

    There are thousands of Mendelian diseases with more being discovered weekly and the majority have no approved treatments. To address this need, we require scalable approaches that are relatively inexpensive compared to traditional drug development. In the absence of a validated drug target, phenotypic screening in model organisms provides a route for identifying candidate treatments. Success requires a screenable phenotype. However, the right phenotype and assay may not be obvious for pleiotropic neuromuscular disorders. Here, we show that high-throughput imaging and quantitative phenotyping can be conducted systematically on a panel of C. elegans disease model strains. We used CRISPR genome-editing to create 25 worm models of human Mendelian diseases and phenotyped them using a single standardised assay. All but two strains were significantly different from wild-type controls in at least one feature. The observed phenotypes were diverse, but mutations of genes predicted to have related functions led to similar behavioural differences in worms. As a proof-of-concept, we performed a drug repurposing screen of an FDA-approved compound library, and identified two compounds that rescued the behavioural phenotype of a model of UNC80 deficiency. Our results show that a single assay to measure multiple phenotypes can be applied systematically to diverse Mendelian disease models. The relatively short time and low cost associated with creating and phenotyping multiple strains suggest that high-throughput worm tracking could provide a scalable approach to drug repurposing commensurate with the number of Mendelian diseases.