A novel gene ZNF862 causes hereditary gingival fibromatosis

  1. Juan Wu
  2. Dongna Chen
  3. Hui Huang
  4. Ning Luo
  5. Huishuang Chen
  6. Junjie Zhao
  7. Yanyan Wang
  8. Tian Zhao
  9. Siyuan Huang
  10. Yang Ren
  11. Teng Zhai
  12. Weibin Sun
  13. Houxuan Li  Is a corresponding author
  14. Wei Li  Is a corresponding author
  1. Medical School of Nanjing University, China
  2. BGI Genomics, China
  3. Peking University, China

Abstract

Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis which is featured as a localized or generalized overgrowth of gingivae. Currently two genes (SOS1 and REST), as well as four loci (2p22.1, 2p23.3-p22.3, 5q13-q22, and 11p15), have been identified as associated with HGF in a dominant inheritance pattern. Here we report thirteen individuals with autosomal-dominant HGF from a four-generation Chinese family. Whole-exome sequencing followed by further genetic co-segregation analysis was performed for the family members across three generations. A novel heterozygous missense mutation (c.2812G>A) in zinc finger protein 862 gene (ZNF862) was identified, and it is absent among the population as per the Genome Aggregation Database. The functional study supports a biological role of ZNF862 for increasing the profibrotic factors particularly COL1A1 synthesis and hence resulting in HGF. Here for the first time we identify the physiological role of ZNF862 for the association with the HGF.

Data availability

The sequencing data supporting this study have been deposited in the China Genebank Nucleotide Sequence Archive (https://db.cngb.org/cnsa, accession number CNP0000995).

Article and author information

Author details

  1. Juan Wu

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  2. Dongna Chen

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Dongna Chen, is employee of BGI Genomics..
  3. Hui Huang

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Hui Huang, is employee of BGI Genomics..
  4. Ning Luo

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  5. Huishuang Chen

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Huishuang Chen, is employee of BGI Genomics..
  6. Junjie Zhao

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  7. Yanyan Wang

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Yanyan Wang, is employee of BGI Genomics..
  8. Tian Zhao

    Department of Periodontology, Medical School of Nanjing University, shenzhen, China
    Competing interests
    No competing interests declared.
  9. Siyuan Huang

    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    No competing interests declared.
  10. Yang Ren

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  11. Teng Zhai

    Clinical research, BGI Genomics, shenzhen, China
    Competing interests
    Teng Zhai, is employee of BGI Genomics..
  12. Weibin Sun

    Department of Periodontology, Medical School of Nanjing University, shenzhen, China
    Competing interests
    No competing interests declared.
  13. Houxuan Li

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    For correspondence
    lihouxuan3435_0@163.com
    Competing interests
    No competing interests declared.
  14. Wei Li

    Clinical Research, BGI Genomics, Shen zhen, China
    For correspondence
    liwei10@genomics.cn
    Competing interests
    Wei Li, is employee of BGI Genomics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4475-531X

Funding

National Natural Science Foundation of China (51772144)

  • Houxuan Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The usage and handling of human samples in this study was approved by the Institutional Review Board on Bioethics and Biosafety of BGI (IRB No. 19059) and the written informed consent obtained from each participant. Clinical investigation was performed in accordance with the Declaration of Helsinki.

Copyright

© 2022, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 877
    views
  • 188
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Wu
  2. Dongna Chen
  3. Hui Huang
  4. Ning Luo
  5. Huishuang Chen
  6. Junjie Zhao
  7. Yanyan Wang
  8. Tian Zhao
  9. Siyuan Huang
  10. Yang Ren
  11. Teng Zhai
  12. Weibin Sun
  13. Houxuan Li
  14. Wei Li
(2022)
A novel gene ZNF862 causes hereditary gingival fibromatosis
eLife 11:e66646.
https://doi.org/10.7554/eLife.66646

Share this article

https://doi.org/10.7554/eLife.66646

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    James Boocock, Noah Alexander ... Leonid Kruglyak
    Research Article

    Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article Updated

    The establishment and growth of the arterial endothelium require the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1, and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4, or venous-enriched NR2F2. This cohort of well-characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signaling pathways with arterial gene expression.