Glial insulin regulates cooperative or antagonistic Golden goal/Flamingo interactions during photoreceptor axon guidance

  1. Hiroki Takechi
  2. Satoko Hakeda-Suzuki  Is a corresponding author
  3. Yohei Nitta
  4. Yuichi Ishiwata
  5. Riku Iwanaga
  6. Makoto Sato
  7. Atsushi Sugie
  8. Takashi Suzuki  Is a corresponding author
  1. Tokyo Institute of Technology, Japan
  2. Niigata University, Niigata, Japan
  3. Kanazawa University, Japan

Abstract

Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided.

Article and author information

Author details

  1. Hiroki Takechi

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Satoko Hakeda-Suzuki

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    For correspondence
    hakeda@bio.titech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Yohei Nitta

    Center for Transdisciplinary Research, Niigata University, Niigata, Niigata, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0712-428X
  4. Yuichi Ishiwata

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Riku Iwanaga

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Makoto Sato

    Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7763-0751
  7. Atsushi Sugie

    Center for Transdisciplinary Research, Niigata University, Niigata, Niigata, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Takashi Suzuki

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    For correspondence
    suzukit@bio.titech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9093-2562

Funding

Japan Society for the Promotion of Science (19J14499)

  • Hiroki Takechi

Ministry of Education, Culture, Sports, Science and Technology (17H05761)

  • Makoto Sato

Ministry of Education, Culture, Sports, Science and Technology (19H04771)

  • Makoto Sato

Takeda Science Foundation (Life Sciemce Research Grant)

  • Atsushi Sugie

Takeda Science Foundation (Visionary Research Grant)

  • Takashi Suzuki

Japan Society for the Promotion of Science (18J00367)

  • Yohei Nitta

Japan Society for the Promotion of Science (18K06250)

  • Satoko Hakeda-Suzuki

Japan Society for the Promotion of Science (18K14835)

  • Yohei Nitta

Japan Society for the Promotion of Science (17H03542)

  • Makoto Sato

Japan Society for the Promotion of Science (17H04983)

  • Atsushi Sugie

Japan Society for the Promotion of Science (19K22592)

  • Atsushi Sugie

Ministry of Education, Culture, Sports, Science and Technology (16H06457)

  • Takashi Suzuki

Ministry of Education, Culture, Sports, Science and Technology (17H05739)

  • Makoto Sato

The authors declare that there was no funding for this work.

Copyright

© 2021, Takechi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,554
    views
  • 169
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroki Takechi
  2. Satoko Hakeda-Suzuki
  3. Yohei Nitta
  4. Yuichi Ishiwata
  5. Riku Iwanaga
  6. Makoto Sato
  7. Atsushi Sugie
  8. Takashi Suzuki
(2021)
Glial insulin regulates cooperative or antagonistic Golden goal/Flamingo interactions during photoreceptor axon guidance
eLife 10:e66718.
https://doi.org/10.7554/eLife.66718

Share this article

https://doi.org/10.7554/eLife.66718

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.