Glial insulin regulates cooperative or antagonistic Golden goal/Flamingo interactions during photoreceptor axon guidance

  1. Hiroki Takechi
  2. Satoko Hakeda-Suzuki  Is a corresponding author
  3. Yohei Nitta
  4. Yuichi Ishiwata
  5. Riku Iwanaga
  6. Makoto Sato
  7. Atsushi Sugie
  8. Takashi Suzuki  Is a corresponding author
  1. Tokyo Institute of Technology, Japan
  2. Niigata University, Niigata, Japan
  3. Kanazawa University, Japan

Abstract

Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided.

Article and author information

Author details

  1. Hiroki Takechi

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Satoko Hakeda-Suzuki

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    For correspondence
    hakeda@bio.titech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Yohei Nitta

    Center for Transdisciplinary Research, Niigata University, Niigata, Niigata, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0712-428X
  4. Yuichi Ishiwata

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Riku Iwanaga

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Makoto Sato

    Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7763-0751
  7. Atsushi Sugie

    Center for Transdisciplinary Research, Niigata University, Niigata, Niigata, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Takashi Suzuki

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    For correspondence
    suzukit@bio.titech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9093-2562

Funding

Japan Society for the Promotion of Science (19J14499)

  • Hiroki Takechi

Ministry of Education, Culture, Sports, Science and Technology (17H05761)

  • Makoto Sato

Ministry of Education, Culture, Sports, Science and Technology (19H04771)

  • Makoto Sato

Takeda Science Foundation (Life Sciemce Research Grant)

  • Atsushi Sugie

Takeda Science Foundation (Visionary Research Grant)

  • Takashi Suzuki

Japan Society for the Promotion of Science (18J00367)

  • Yohei Nitta

Japan Society for the Promotion of Science (18K06250)

  • Satoko Hakeda-Suzuki

Japan Society for the Promotion of Science (18K14835)

  • Yohei Nitta

Japan Society for the Promotion of Science (17H03542)

  • Makoto Sato

Japan Society for the Promotion of Science (17H04983)

  • Atsushi Sugie

Japan Society for the Promotion of Science (19K22592)

  • Atsushi Sugie

Ministry of Education, Culture, Sports, Science and Technology (16H06457)

  • Takashi Suzuki

Ministry of Education, Culture, Sports, Science and Technology (17H05739)

  • Makoto Sato

The authors declare that there was no funding for this work.

Copyright

© 2021, Takechi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,510
    views
  • 163
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroki Takechi
  2. Satoko Hakeda-Suzuki
  3. Yohei Nitta
  4. Yuichi Ishiwata
  5. Riku Iwanaga
  6. Makoto Sato
  7. Atsushi Sugie
  8. Takashi Suzuki
(2021)
Glial insulin regulates cooperative or antagonistic Golden goal/Flamingo interactions during photoreceptor axon guidance
eLife 10:e66718.
https://doi.org/10.7554/eLife.66718

Share this article

https://doi.org/10.7554/eLife.66718

Further reading

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.

    1. Developmental Biology
    Dena Goldblatt, Basak Rosti ... David Schoppik
    Research Article

    Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.