Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR

  1. Peter J Diebold
  2. Felicia N New
  3. Michael Hovan
  4. Michael J Satlin
  5. Ilana Brito  Is a corresponding author
  1. Cornell University, United States
  2. Robert Woods Johnson Medical School, United States
  3. Weill Cornell Medicine, United States

Abstract

The horizonal transfer of plasmid-encoded genes allows bacteria to adapt to constantly shifting environmental pressures, bestowing functional advantages to their bacterial hosts such as antibiotic resistance, metal resistance, virulence factors, and polysaccharide utilization. However, common molecular methods such as short- and long-read sequencing of microbiomes cannot associate extrachromosomal plasmids with the genome of the host bacterium. Alternative methods to link plasmids to host bacteria are either laborious, expensive or prone to contamination. Here we present the One-step Isolation and Lysis PCR (OIL-PCR) method, which molecularly links plasmid encoded genes with the bacterial 16S rRNA gene via fusion PCR performed within an emulsion. After validating this method, we apply it to identify the bacterial hosts of three clinically relevant beta-lactamases within the gut microbiomes of neutropenic patients, as they are particularly vulnerable multidrug-resistant infections. We successfully detect the known association of a multi-drug resistant plasmid with Klebsiella pneumoniae, as well as the novel associations of two low-abundance genera, Romboutsia and Agathobacter. Further investigation with OIL-PCR confirmed that our detection of Romboutsia is due to its physical association with Klebsiella as opposed to directly harboring the genes. Here we put forth a robust, accessible, and high-throughput platform for sensitively surveying the bacterial hosts of mobile genes, as well as detecting physical bacterial associations such as those occurring within biofilms and complex microbial communities.

Data availability

All fusion PCR amplicons are deposited in SRA under the accession number PRJNA701446. The metagenomic samples analyzed can be obtained through SRA with under the accession number PRJNA649316.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Peter J Diebold

    Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Felicia N New

    Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Hovan

    Department of Medicine, Robert Woods Johnson Medical School, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael J Satlin

    Infectious Disease, Weill Cornell Medicine, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ilana Brito

    Biomedical Engineering, Cornell University, Ithaca, United States
    For correspondence
    ibrito@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2250-3480

Funding

Centers for Disease Control and Prevention (OADS BAA 2016-N-17812)

  • Michael J Satlin
  • Ilana Brito

National Science Foundation (1661338)

  • Ilana Brito

National Science Foundation (1650122)

  • Ilana Brito

National Institutes of Health (K23 AI114994)

  • Michael J Satlin

National Institutes of Health (1DP2HL141007-01)

  • Ilana Brito

Pew Charitable Trusts

  • Ilana Brito

Alfred P. Sloan Foundation

  • Ilana Brito

David and Lucile Packard Foundation

  • Ilana Brito

State University of New York

  • Felicia N New

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All human subjects research was approved by the Weill Cornell Medicine IRB (#1504016114) and Cornell University IRB (#1609006586). Informed consent and consent to publish were obtained from individuals receiving a hematopoietic stem cell transplant at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. Serial stool samples were obtained from consenting patients. Consent documents and procedures were approved by the Institutional Review Boards at Weill Cornell Medical College (#1504016114) and Cornell University (#1609006586).

Copyright

© 2021, Diebold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,063
    views
  • 343
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter J Diebold
  2. Felicia N New
  3. Michael Hovan
  4. Michael J Satlin
  5. Ilana Brito
(2021)
Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR
eLife 10:e66834.
https://doi.org/10.7554/eLife.66834

Share this article

https://doi.org/10.7554/eLife.66834

Further reading

    1. Genetics and Genomics
    Ximena Corso Diaz, Xulong Liang ... Anand Swaroop
    Research Article

    RNA-binding proteins (RBPs) perform diverse functions including the regulation of chromatin dynamics and the coupling of transcription with RNA processing. However, our understanding of their actions in mammalian neurons remains limited. Using affinity purification, yeast-two-hybrid and proximity ligation assays, we identified interactions of multiple RBPs with neural retina leucine (NRL) zipper, a Maf-family transcription factor critical for retinal rod photoreceptor development and function. In addition to splicing, many NRL-interacting RBPs are associated with R-loops, which form during transcription and increase during photoreceptor maturation. Focusing on DHX9 RNA helicase, we demonstrate that its expression is modulated by NRL and that the NRL–DHX9 interaction is positively influenced by R-loops. ssDRIP-Seq analysis reveals both stranded and unstranded R-loops at distinct genomic elements, characterized by active and inactive epigenetic signatures and enriched at neuronal genes. NRL binds to both types of R-loops, suggesting an epigenetically independent function. Our findings suggest additional functions of NRL during transcription and highlight complex interactions among transcription factors, RBPs, and R-loops in regulating photoreceptor gene expression in the mammalian retina.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Eric V Strobl, Eric Gamazon
    Research Article

    Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.