Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR

  1. Peter J Diebold
  2. Felicia N New
  3. Michael Hovan
  4. Michael J Satlin
  5. Ilana Brito  Is a corresponding author
  1. Cornell University, United States
  2. Robert Woods Johnson Medical School, United States
  3. Weill Cornell Medicine, United States

Abstract

The horizonal transfer of plasmid-encoded genes allows bacteria to adapt to constantly shifting environmental pressures, bestowing functional advantages to their bacterial hosts such as antibiotic resistance, metal resistance, virulence factors, and polysaccharide utilization. However, common molecular methods such as short- and long-read sequencing of microbiomes cannot associate extrachromosomal plasmids with the genome of the host bacterium. Alternative methods to link plasmids to host bacteria are either laborious, expensive or prone to contamination. Here we present the One-step Isolation and Lysis PCR (OIL-PCR) method, which molecularly links plasmid encoded genes with the bacterial 16S rRNA gene via fusion PCR performed within an emulsion. After validating this method, we apply it to identify the bacterial hosts of three clinically relevant beta-lactamases within the gut microbiomes of neutropenic patients, as they are particularly vulnerable multidrug-resistant infections. We successfully detect the known association of a multi-drug resistant plasmid with Klebsiella pneumoniae, as well as the novel associations of two low-abundance genera, Romboutsia and Agathobacter. Further investigation with OIL-PCR confirmed that our detection of Romboutsia is due to its physical association with Klebsiella as opposed to directly harboring the genes. Here we put forth a robust, accessible, and high-throughput platform for sensitively surveying the bacterial hosts of mobile genes, as well as detecting physical bacterial associations such as those occurring within biofilms and complex microbial communities.

Data availability

All fusion PCR amplicons are deposited in SRA under the accession number PRJNA701446. The metagenomic samples analyzed can be obtained through SRA with under the accession number PRJNA649316.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Peter J Diebold

    Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Felicia N New

    Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Hovan

    Department of Medicine, Robert Woods Johnson Medical School, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael J Satlin

    Infectious Disease, Weill Cornell Medicine, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ilana Brito

    Biomedical Engineering, Cornell University, Ithaca, United States
    For correspondence
    ibrito@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2250-3480

Funding

Centers for Disease Control and Prevention (OADS BAA 2016-N-17812)

  • Michael J Satlin
  • Ilana Brito

National Science Foundation (1661338)

  • Ilana Brito

National Science Foundation (1650122)

  • Ilana Brito

National Institutes of Health (K23 AI114994)

  • Michael J Satlin

National Institutes of Health (1DP2HL141007-01)

  • Ilana Brito

Pew Charitable Trusts

  • Ilana Brito

Alfred P. Sloan Foundation

  • Ilana Brito

David and Lucile Packard Foundation

  • Ilana Brito

State University of New York

  • Felicia N New

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sophie Helaine, Harvard Medical School, United States

Ethics

Human subjects: All human subjects research was approved by the Weill Cornell Medicine IRB (#1504016114) and Cornell University IRB (#1609006586). Informed consent and consent to publish were obtained from individuals receiving a hematopoietic stem cell transplant at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. Serial stool samples were obtained from consenting patients. Consent documents and procedures were approved by the Institutional Review Boards at Weill Cornell Medical College (#1504016114) and Cornell University (#1609006586).

Version history

  1. Received: January 22, 2021
  2. Preprint posted: January 23, 2021 (view preprint)
  3. Accepted: June 30, 2021
  4. Accepted Manuscript published: July 20, 2021 (version 1)
  5. Version of Record published: July 21, 2021 (version 2)

Copyright

© 2021, Diebold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,656
    views
  • 299
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter J Diebold
  2. Felicia N New
  3. Michael Hovan
  4. Michael J Satlin
  5. Ilana Brito
(2021)
Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR
eLife 10:e66834.
https://doi.org/10.7554/eLife.66834

Share this article

https://doi.org/10.7554/eLife.66834

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jason E Stajich, Brian Lovett ... Carolyn Elya
    Research Article

    Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Brian PH Metzger, Yeonwoo Park ... Joseph W Thornton
    Research Article

    A protein’s genetic architecture – the set of causal rules by which its sequence produces its functions – also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest – excluding the vast majority of possible genotypes and evolutionary trajectories – and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor’s specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor’s capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.