Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR

  1. Peter J Diebold
  2. Felicia N New
  3. Michael Hovan
  4. Michael J Satlin
  5. Ilana Brito  Is a corresponding author
  1. Cornell University, United States
  2. Robert Woods Johnson Medical School, United States
  3. Weill Cornell Medicine, United States

Abstract

The horizonal transfer of plasmid-encoded genes allows bacteria to adapt to constantly shifting environmental pressures, bestowing functional advantages to their bacterial hosts such as antibiotic resistance, metal resistance, virulence factors, and polysaccharide utilization. However, common molecular methods such as short- and long-read sequencing of microbiomes cannot associate extrachromosomal plasmids with the genome of the host bacterium. Alternative methods to link plasmids to host bacteria are either laborious, expensive or prone to contamination. Here we present the One-step Isolation and Lysis PCR (OIL-PCR) method, which molecularly links plasmid encoded genes with the bacterial 16S rRNA gene via fusion PCR performed within an emulsion. After validating this method, we apply it to identify the bacterial hosts of three clinically relevant beta-lactamases within the gut microbiomes of neutropenic patients, as they are particularly vulnerable multidrug-resistant infections. We successfully detect the known association of a multi-drug resistant plasmid with Klebsiella pneumoniae, as well as the novel associations of two low-abundance genera, Romboutsia and Agathobacter. Further investigation with OIL-PCR confirmed that our detection of Romboutsia is due to its physical association with Klebsiella as opposed to directly harboring the genes. Here we put forth a robust, accessible, and high-throughput platform for sensitively surveying the bacterial hosts of mobile genes, as well as detecting physical bacterial associations such as those occurring within biofilms and complex microbial communities.

Data availability

All fusion PCR amplicons are deposited in SRA under the accession number PRJNA701446. The metagenomic samples analyzed can be obtained through SRA with under the accession number PRJNA649316.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Peter J Diebold

    Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Felicia N New

    Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Hovan

    Department of Medicine, Robert Woods Johnson Medical School, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael J Satlin

    Infectious Disease, Weill Cornell Medicine, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ilana Brito

    Biomedical Engineering, Cornell University, Ithaca, United States
    For correspondence
    ibrito@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2250-3480

Funding

Centers for Disease Control and Prevention (OADS BAA 2016-N-17812)

  • Michael J Satlin
  • Ilana Brito

National Science Foundation (1661338)

  • Ilana Brito

National Science Foundation (1650122)

  • Ilana Brito

National Institutes of Health (K23 AI114994)

  • Michael J Satlin

National Institutes of Health (1DP2HL141007-01)

  • Ilana Brito

Pew Charitable Trusts

  • Ilana Brito

Alfred P. Sloan Foundation

  • Ilana Brito

David and Lucile Packard Foundation

  • Ilana Brito

State University of New York

  • Felicia N New

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All human subjects research was approved by the Weill Cornell Medicine IRB (#1504016114) and Cornell University IRB (#1609006586). Informed consent and consent to publish were obtained from individuals receiving a hematopoietic stem cell transplant at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. Serial stool samples were obtained from consenting patients. Consent documents and procedures were approved by the Institutional Review Boards at Weill Cornell Medical College (#1504016114) and Cornell University (#1609006586).

Copyright

© 2021, Diebold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,044
    views
  • 342
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter J Diebold
  2. Felicia N New
  3. Michael Hovan
  4. Michael J Satlin
  5. Ilana Brito
(2021)
Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR
eLife 10:e66834.
https://doi.org/10.7554/eLife.66834

Share this article

https://doi.org/10.7554/eLife.66834

Further reading

    1. Genetics and Genomics
    Jorge Blanco Mendana, Margaret Donovan ... Daryl M Gohl
    Tools and Resources

    Advances in single-cell sequencing technologies have provided novel insights into the dynamics of gene expression and cellular heterogeneity within tissues and have enabled the construction of transcriptomic cell atlases. However, linking anatomical information to transcriptomic data and positively identifying the cell types that correspond to gene expression clusters in single-cell sequencing data sets remains a challenge. We describe a straightforward genetic barcoding approach that takes advantage of the powerful genetic tools in Drosophila to allow in vivo tagging of defined cell populations. This method, called Targeted Genetically-Encoded Multiplexing (TaG-EM), involves inserting a DNA barcode just upstream of the polyadenylation site in a Gal4-inducible UAS-GFP construct so that the barcode sequence can be read out during single-cell sequencing, labeling a cell population of interest. By creating many such independently barcoded fly strains, TaG-EM enables positive identification of cell types in cell atlas projects, identification of multiplet droplets, and barcoding of experimental timepoints, conditions, and replicates. Furthermore, we demonstrate that TaG-EM barcodes can be read out using next-generation sequencing to facilitate population-scale behavioral measurements. Thus, TaG-EM has the potential to enable large-scale behavioral screens in addition to improving the ability to multiplex and reliably annotate single-cell transcriptomic experiments.

    1. Genetics and Genomics
    Nathan M Shugarts Devanapally, Aishwarya Sathya ... Antony M Jose
    Research Article

    RNAs in circulation carry sequence-specific regulatory information between cells in plant, animal, and host-pathogen systems. Such RNA can cross generational boundaries, as evidenced by somatic double-stranded RNA (dsRNA) in the nematode Caenorhabditis elegans silencing genes of matching sequence in progeny. Here we dissect the intergenerational path taken by dsRNA from parental circulation and discover that cytosolic import through the dsRNA importer SID-1 in the parental germline and/or developing progeny varies with developmental time and dsRNA substrates. Loss of SID-1 enhances initiation of heritable RNA silencing within the germline and causes changes in the expression of the sid-1-dependent gene sdg-1 that last for more than 100 generations after restoration of SID-1. The SDG-1 protein is enriched in perinuclear germ granules required for heritable RNA silencing but is expressed from a retrotransposon targeted by such silencing. This auto-inhibitory loop suggests how retrotransposons could persist by hosting genes that regulate their own silencing.