Conformational changes in twitchin kinase in vivo revealed by FRET imaging of freely moving C. elegans

  1. Daniel Porto
  2. Yohei Matsunaga
  3. Barbara Franke
  4. Rhys M Williams
  5. Hiroshi Qadota
  6. Olga Mayans
  7. Guy M Benian
  8. Hang Lu  Is a corresponding author
  1. Georgia Institute of Technology, United States
  2. Emory University, United States
  3. University of Konstanz, Germany

Abstract

The force-induced unfolding and refolding of proteins is speculated to be a key mechanism in the sensing and transduction of mechanical signals in the living cell. Yet, little evidence has been gathered for its existence in vivo. Prominently, stretch-induced unfolding is postulated to be the activation mechanism of the twitchin/titin family of autoinhibited sarcomeric kinases linked to the mechanical stress response of muscle. To test the occurrence of mechanical kinase activation in living working muscle, we generated transgenic C. elegans expressing twitchin containing FRET moieties flanking the kinase domain and developed a quantitative technique for extracting FRET signals in freely moving C. elegans, using tracking and simultaneous imaging of animals in three channels (donor fluorescence, acceptor fluorescence, and transmitted light). Computer vision algorithms were used to extract fluorescence signals and muscle contraction states in each frame, in order to obtain fluorescence and body curvature measurements with spatial and temporal precision in vivo. The data revealed statistically significant periodic changes in FRET signals during muscle activity, consistent with a periodic change in the conformation of twitchin kinase. We conclude that stretch-unfolding of twitchin kinase occurs in the active muscle, whereby mechanical activity titrates the signalling pathway of this cytoskeletal kinase. We anticipate that the methods we have developed here could be applied to obtaining in vivo evidence for force-induced conformational changes or elastic behavior of other proteins not only in C. elegans but in other animals in which there is optical transparency (e.g zebrafish).

Data availability

All data generated or analyzed during this study will be deposited to Dryad.

The following data sets were generated

Article and author information

Author details

  1. Daniel Porto

    Bioengineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yohei Matsunaga

    Pathology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Barbara Franke

    Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Rhys M Williams

    Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1982-2632
  5. Hiroshi Qadota

    Pathology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Olga Mayans

    Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Guy M Benian

    Pathology (and Cell Biology), Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8236-3176
  8. Hang Lu

    Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
    For correspondence
    hang.lu@gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6881-660X

Funding

Human Frontier Science Program (RGP0044/2012)

  • Olga Mayans
  • Guy M Benian
  • Hang Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Porto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,094
    views
  • 151
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Porto
  2. Yohei Matsunaga
  3. Barbara Franke
  4. Rhys M Williams
  5. Hiroshi Qadota
  6. Olga Mayans
  7. Guy M Benian
  8. Hang Lu
(2021)
Conformational changes in twitchin kinase in vivo revealed by FRET imaging of freely moving C. elegans
eLife 10:e66862.
https://doi.org/10.7554/eLife.66862

Share this article

https://doi.org/10.7554/eLife.66862

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Ju Kang, Shijie Zhang ... Xin Wang
    Research Article

    Explaining biodiversity is a fundamental issue in ecology. A long-standing puzzle lies in the paradox of the plankton: many species of plankton feeding on a limited variety of resources coexist, apparently flouting the competitive exclusion principle (CEP), which holds that the number of predator (consumer) species cannot exceed that of the resources at a steady state. Here, we present a mechanistic model and demonstrate that intraspecific interference among the consumers enables a plethora of consumer species to coexist at constant population densities with only one or a handful of resource species. This facilitated biodiversity is resistant to stochasticity, either with the stochastic simulation algorithm or individual-based modeling. Our model naturally explains the classical experiments that invalidate the CEP, quantitatively illustrates the universal S-shaped pattern of the rank-abundance curves across a wide range of ecological communities, and can be broadly used to resolve the mystery of biodiversity in many natural ecosystems.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Divyoj Singh, Sriram Ramaswamy ... Mohd Suhail Rizvi
    Research Article

    Planar cell polarity (PCP) – tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface – is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules – broadly classified into “global” and “local” modules – have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment – a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - the rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.