Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction

  1. Muhammad Arif
  2. Martina Klevstig
  3. Rui Benfeitas
  4. Stephen Doran
  5. Hasan Turkez
  6. Mathias Uhlén
  7. Maryam Clausen
  8. Johannes Wikström
  9. Damla Etal
  10. Cheng Zhang
  11. Malin Levin
  12. Adil Mardinoglu  Is a corresponding author
  13. Jan Boren  Is a corresponding author
  1. KTH Royal Institute of Technology, Sweden
  2. University of Gothenburg, Sweden
  3. KTH - Royal Institute of Technology, Sweden
  4. King's College London, United Kingdom
  5. Atatürk University, Turkey
  6. AstraZeneca, Sweden

Abstract

Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24-hours post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI; and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.

Data availability

All raw RNA-sequencing data generated from this study can be accessed through accession number GSE153485.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Muhammad Arif

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2261-0881
  2. Martina Klevstig

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  3. Rui Benfeitas

    Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7972-0083
  4. Stephen Doran

    Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Hasan Turkez

    Department of Medical Biology, Atatürk University, Erzurum, Turkey
    Competing interests
    No competing interests declared.
  6. Mathias Uhlén

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  7. Maryam Clausen

    Discovery Sciences, Innovative Medicines and Early Development Biotech unit, AstraZeneca, Mölndal, Sweden
    Competing interests
    Maryam Clausen, employee at AstraZeneca.
  8. Johannes Wikström

    Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
    Competing interests
    Johannes Wikström, employee at AstraZeneca.
  9. Damla Etal

    Translational Genomics, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Damla Etal, employee at AstraZeneca.
  10. Cheng Zhang

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3721-8586
  11. Malin Levin

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  12. Adil Mardinoglu

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    For correspondence
    adil.mardinoglu@kcl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4254-6090
  13. Jan Boren

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    Jan.Boren@wlab.gu.se
    Competing interests
    No competing interests declared.

Funding

Knut och Alice Wallenbergs Stiftelse

  • Adil Mardinoglu
  • Jan Boren

Vetenskapsrådet

  • Jan Boren

Hjärt-Lungfonden

  • Jan Boren

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study were approved by the local animal ethics committee and conform to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Copyright

© 2021, Arif et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,151
    views
  • 406
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Muhammad Arif
  2. Martina Klevstig
  3. Rui Benfeitas
  4. Stephen Doran
  5. Hasan Turkez
  6. Mathias Uhlén
  7. Maryam Clausen
  8. Johannes Wikström
  9. Damla Etal
  10. Cheng Zhang
  11. Malin Levin
  12. Adil Mardinoglu
  13. Jan Boren
(2021)
Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction
eLife 10:e66921.
https://doi.org/10.7554/eLife.66921

Share this article

https://doi.org/10.7554/eLife.66921

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.