Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction

  1. Muhammad Arif
  2. Martina Klevstig
  3. Rui Benfeitas
  4. Stephen Doran
  5. Hasan Turkez
  6. Mathias Uhlén
  7. Maryam Clausen
  8. Johannes Wikström
  9. Damla Etal
  10. Cheng Zhang
  11. Malin Levin
  12. Adil Mardinoglu  Is a corresponding author
  13. Jan Boren  Is a corresponding author
  1. KTH Royal Institute of Technology, Sweden
  2. University of Gothenburg, Sweden
  3. KTH - Royal Institute of Technology, Sweden
  4. King's College London, United Kingdom
  5. Atatürk University, Turkey
  6. AstraZeneca, Sweden

Abstract

Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24-hours post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI; and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.

Data availability

All raw RNA-sequencing data generated from this study can be accessed through accession number GSE153485.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Muhammad Arif

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2261-0881
  2. Martina Klevstig

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  3. Rui Benfeitas

    Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7972-0083
  4. Stephen Doran

    Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Hasan Turkez

    Department of Medical Biology, Atatürk University, Erzurum, Turkey
    Competing interests
    No competing interests declared.
  6. Mathias Uhlén

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  7. Maryam Clausen

    Discovery Sciences, Innovative Medicines and Early Development Biotech unit, AstraZeneca, Mölndal, Sweden
    Competing interests
    Maryam Clausen, employee at AstraZeneca.
  8. Johannes Wikström

    Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
    Competing interests
    Johannes Wikström, employee at AstraZeneca.
  9. Damla Etal

    Translational Genomics, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Damla Etal, employee at AstraZeneca.
  10. Cheng Zhang

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3721-8586
  11. Malin Levin

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  12. Adil Mardinoglu

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    For correspondence
    adil.mardinoglu@kcl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4254-6090
  13. Jan Boren

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    Jan.Boren@wlab.gu.se
    Competing interests
    No competing interests declared.

Funding

Knut och Alice Wallenbergs Stiftelse

  • Adil Mardinoglu
  • Jan Boren

Vetenskapsrådet

  • Jan Boren

Hjärt-Lungfonden

  • Jan Boren

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study were approved by the local animal ethics committee and conform to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Reviewing Editor

  1. Edward D Janus, University of Melbourne, Australia

Version history

  1. Received: January 26, 2021
  2. Accepted: April 25, 2021
  3. Accepted Manuscript published: May 11, 2021 (version 1)
  4. Version of Record published: June 8, 2021 (version 2)

Copyright

© 2021, Arif et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,611
    Page views
  • 320
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Muhammad Arif
  2. Martina Klevstig
  3. Rui Benfeitas
  4. Stephen Doran
  5. Hasan Turkez
  6. Mathias Uhlén
  7. Maryam Clausen
  8. Johannes Wikström
  9. Damla Etal
  10. Cheng Zhang
  11. Malin Levin
  12. Adil Mardinoglu
  13. Jan Boren
(2021)
Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction
eLife 10:e66921.
https://doi.org/10.7554/eLife.66921

Further reading

    1. Computational and Systems Biology
    Louis Gall, Carrie Duckworth ... Carmen Pin
    Research Article

    The maintenance of the functional integrity of the intestinal epithelium requires a tight coordination between cell production, migration and shedding along the crypt-villus axis. Dysregulation of these processes may result in loss of the intestinal barrier and disease. With the aim of generating a more complete and integrated understanding of how the epithelium maintains homeostasis and recovers after injury, we have built a multi-scale agent-based model (ABM) of the mouse intestinal epithelium. We demonstrate that stable, self-organizing behaviour in the crypt emerges from the dynamic interaction of multiple signalling pathways, such as Wnt, Notch, BMP, ZNRF3/RNF43 and YAP-Hippo pathways, which regulate proliferation and differentiation, respond to environmental mechanical cues, form feedback mechanisms and modulate the dynamics of the cell cycle protein network. The model recapitulates the crypt phenotype reported after persistent stem cell ablation and after the inhibition of the CDK1 cycle protein. Moreover, we simulated 5-fluorouracil (5-FU)-induced toxicity at multiple scales starting from DNA and RNA damage, which disrupts the cell cycle, cell signalling, proliferation, differentiation and migration and leads to loss of barrier integrity. During recovery, our in-silico crypt regenerates its structure in a self-organizing, dynamic fashion driven by dedifferentiation and enhanced by negative feedback loops. Thus, the model enables the simulation of xenobiotic-, in particular chemotherapy-, induced mechanisms of intestinal toxicity and epithelial recovery. Overall, we present a systems model able to simulate the disruption of molecular events and its impact across multiple levels of epithelial organization and demonstrate its application to epithelial research and drug development.

    1. Computational and Systems Biology
    Arya Mani
    Insight

    A deep analysis of multiple genomic datasets reveals which genetic pathways associated with atherosclerosis and coronary artery disease are shared between mice and humans.