Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction

  1. Muhammad Arif
  2. Martina Klevstig
  3. Rui Benfeitas
  4. Stephen Doran
  5. Hasan Turkez
  6. Mathias Uhlén
  7. Maryam Clausen
  8. Johannes Wikström
  9. Damla Etal
  10. Cheng Zhang
  11. Malin Levin
  12. Adil Mardinoglu  Is a corresponding author
  13. Jan Boren  Is a corresponding author
  1. KTH Royal Institute of Technology, Sweden
  2. University of Gothenburg, Sweden
  3. KTH - Royal Institute of Technology, Sweden
  4. King's College London, United Kingdom
  5. Atatürk University, Turkey
  6. AstraZeneca, Sweden

Abstract

Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24-hours post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI; and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.

Data availability

All raw RNA-sequencing data generated from this study can be accessed through accession number GSE153485.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Muhammad Arif

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2261-0881
  2. Martina Klevstig

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  3. Rui Benfeitas

    Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7972-0083
  4. Stephen Doran

    Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Hasan Turkez

    Department of Medical Biology, Atatürk University, Erzurum, Turkey
    Competing interests
    No competing interests declared.
  6. Mathias Uhlén

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  7. Maryam Clausen

    Discovery Sciences, Innovative Medicines and Early Development Biotech unit, AstraZeneca, Mölndal, Sweden
    Competing interests
    Maryam Clausen, employee at AstraZeneca.
  8. Johannes Wikström

    Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
    Competing interests
    Johannes Wikström, employee at AstraZeneca.
  9. Damla Etal

    Translational Genomics, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Damla Etal, employee at AstraZeneca.
  10. Cheng Zhang

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3721-8586
  11. Malin Levin

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  12. Adil Mardinoglu

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    For correspondence
    adil.mardinoglu@kcl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4254-6090
  13. Jan Boren

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    Jan.Boren@wlab.gu.se
    Competing interests
    No competing interests declared.

Funding

Knut och Alice Wallenbergs Stiftelse

  • Adil Mardinoglu
  • Jan Boren

Vetenskapsrådet

  • Jan Boren

Hjärt-Lungfonden

  • Jan Boren

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study were approved by the local animal ethics committee and conform to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Copyright

© 2021, Arif et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,199
    views
  • 412
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.66921

Further reading

    1. Computational and Systems Biology
    George N Bendzunas, Dominic P Byrne ... Natarajan Kannan
    Research Article

    In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.