Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction

  1. Muhammad Arif
  2. Martina Klevstig
  3. Rui Benfeitas
  4. Stephen Doran
  5. Hasan Turkez
  6. Mathias Uhlén
  7. Maryam Clausen
  8. Johannes Wikström
  9. Damla Etal
  10. Cheng Zhang
  11. Malin Levin
  12. Adil Mardinoglu  Is a corresponding author
  13. Jan Boren  Is a corresponding author
  1. KTH Royal Institute of Technology, Sweden
  2. University of Gothenburg, Sweden
  3. KTH - Royal Institute of Technology, Sweden
  4. King's College London, United Kingdom
  5. Atatürk University, Turkey
  6. AstraZeneca, Sweden

Abstract

Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24-hours post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI; and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.

Data availability

All raw RNA-sequencing data generated from this study can be accessed through accession number GSE153485.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Muhammad Arif

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2261-0881
  2. Martina Klevstig

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  3. Rui Benfeitas

    Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7972-0083
  4. Stephen Doran

    Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Hasan Turkez

    Department of Medical Biology, Atatürk University, Erzurum, Turkey
    Competing interests
    No competing interests declared.
  6. Mathias Uhlén

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  7. Maryam Clausen

    Discovery Sciences, Innovative Medicines and Early Development Biotech unit, AstraZeneca, Mölndal, Sweden
    Competing interests
    Maryam Clausen, employee at AstraZeneca.
  8. Johannes Wikström

    Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
    Competing interests
    Johannes Wikström, employee at AstraZeneca.
  9. Damla Etal

    Translational Genomics, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Damla Etal, employee at AstraZeneca.
  10. Cheng Zhang

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3721-8586
  11. Malin Levin

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  12. Adil Mardinoglu

    Systems Biology, KTH Royal Institute of Technology, Stockholm, Sweden
    For correspondence
    adil.mardinoglu@kcl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4254-6090
  13. Jan Boren

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    Jan.Boren@wlab.gu.se
    Competing interests
    No competing interests declared.

Funding

Knut och Alice Wallenbergs Stiftelse

  • Adil Mardinoglu
  • Jan Boren

Vetenskapsrådet

  • Jan Boren

Hjärt-Lungfonden

  • Jan Boren

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study were approved by the local animal ethics committee and conform to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Reviewing Editor

  1. Edward D Janus, University of Melbourne, Australia

Publication history

  1. Received: January 26, 2021
  2. Accepted: April 25, 2021
  3. Accepted Manuscript published: May 11, 2021 (version 1)
  4. Version of Record published: June 8, 2021 (version 2)

Copyright

© 2021, Arif et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,989
    Page views
  • 262
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Muhammad Arif
  2. Martina Klevstig
  3. Rui Benfeitas
  4. Stephen Doran
  5. Hasan Turkez
  6. Mathias Uhlén
  7. Maryam Clausen
  8. Johannes Wikström
  9. Damla Etal
  10. Cheng Zhang
  11. Malin Levin
  12. Adil Mardinoglu
  13. Jan Boren
(2021)
Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction
eLife 10:e66921.
https://doi.org/10.7554/eLife.66921
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Harry Kane, Nelson M LaMarche ... Lydia Lynch
    Research Article

    Innate T cells, including CD1d-restricted invariant natural killer T (iNKT) cells, are characterized by their rapid activation in response to non-peptide antigens, such as lipids. While the transcriptional profiles of naive, effector and memory adaptive T cells have been well studied, less is known about transcriptional regulation of different iNKT cell activation states. Here, using single cell RNA-sequencing, we performed longitudinal profiling of activated murine iNKT cells, generating a transcriptomic atlas of iNKT cell activation states. We found that transcriptional signatures of activation are highly conserved among heterogeneous iNKT cell populations, including NKT1, NKT2 and NKT17 subsets, and human iNKT cells. Strikingly, we found that regulatory iNKT cells, such as adipose iNKT cells, undergo blunted activation, and display constitutive enrichment of memory-like cMAF+ and KLRG1+ populations. Moreover, we identify a conserved cMAF-associated transcriptional network among NKT10 cells, providing novel insights into the biology of regulatory and antigen experienced iNKT cells.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Stella Tamana, Maria Xenophontos ... Petros Kountouris
    Research Article

    Haemoglobinopathies are the commonest monogenic diseases worldwide and are caused by variants in the globin gene clusters. With over 2400 variants detected to date, their interpretation using the ACMG/AMP guidelines is challenging and computational evidence can provide valuable input about their functional annotation. While many in silico predictors have already been developed, their performance varies for different genes and diseases. In this study, we evaluate 31 in silico predictors using a dataset of 1627 variants in HBA1, HBA2, and HBB. By varying the decision threshold for each tool, we analyse their performance (a) as binary classifiers of pathogenicity, and (b) by using different non-overlapping pathogenic and benign thresholds for their optimal use in the ACMG/AMP framework. Our results show that CADD, Eigen-PC, and REVEL are the overall top performers, with the former reaching moderate strength level for pathogenic prediction. Eigen-PC and REVEL achieve the highest accuracies for missense variants, while CADD is also a reliable predictor of non-missense variants. Moreover, SpliceAI is the top performing splicing predictor, reaching strong level of evidence, while GERP++ and phyloP are the most accurate conservation tools. This study provides evidence about the optimal use of computational tools in globin gene clusters under the ACMG/AMP framework.