Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors

  1. Jordana K Thibado
  2. Jean-Yves Tano
  3. Joon Lee
  4. Leslie Salas-Estrada
  5. Davide Provasi
  6. Alexa Strauss
  7. Joao Marcelo Lamim Ribeiro
  8. Guoqing Xiang
  9. Johannes Broichhagen
  10. Marta Filizola
  11. Martin J Lohse
  12. Joshua Levitz  Is a corresponding author
  1. Weill Cornell Graduate School of Medical Sciences, United States
  2. Max Delbrück Center for Molecular Medicine, Germany
  3. Weill Cornell Medicine, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. Forschungsinstitut für Molekulare Pharmakologie, Germany

Abstract

The metabotropic glutamate receptors (mGluRs) form a family of neuromodulatory G protein-coupled receptors that contain both a seven-helix transmembrane domain (TMD) and a large extracellular ligand-binding domain (LBD) which enables stable dimerization. While numerous studies have revealed variability across subtypes in the initial activation steps at the level of LBD dimers, an understanding of inter-TMD interaction and rearrangement remains limited. Here we use a combination of single molecule fluorescence, molecular dynamics, functional assays, and conformational sensors to reveal that distinct TMD assembly properties drive differences between mGluR subtypes. We uncover a variable region within transmembrane helix 4 (TM4) that contributes to homo- and heterodimerization in a subtype-specific manner and tunes orthosteric, allosteric and basal activation. We also confirm a critical role for a conserved inter-TM6 interface in stabilizing the active state during orthosteric or allosteric activation. Together this study shows that inter-TMD assembly and dynamic rearrangement drive mGluR function with distinct properties between subtypes.

Data availability

We have provided source data files for all relevant figures.

Article and author information

Author details

  1. Jordana K Thibado

    Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jean-Yves Tano

    Receptor Signaling Lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Joon Lee

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leslie Salas-Estrada

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Davide Provasi

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2868-303X
  6. Alexa Strauss

    Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joao Marcelo Lamim Ribeiro

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Guoqing Xiang

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Johannes Broichhagen

    Department of Chemical Biology, Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3084-6595
  10. Marta Filizola

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Martin J Lohse

    Receptor Signaling Lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Joshua Levitz

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    For correspondence
    jtl2003@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8169-6323

Funding

National Institute of General Medical Sciences (R35 GM124731)

  • Joshua Levitz

National Science Foundation (GRFP)

  • Jordana K Thibado

National Institute on Drug Abuse (DA038882)

  • Marta Filizola

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Thibado et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,062
    views
  • 304
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordana K Thibado
  2. Jean-Yves Tano
  3. Joon Lee
  4. Leslie Salas-Estrada
  5. Davide Provasi
  6. Alexa Strauss
  7. Joao Marcelo Lamim Ribeiro
  8. Guoqing Xiang
  9. Johannes Broichhagen
  10. Marta Filizola
  11. Martin J Lohse
  12. Joshua Levitz
(2021)
Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors
eLife 10:e67027.
https://doi.org/10.7554/eLife.67027

Share this article

https://doi.org/10.7554/eLife.67027

Further reading

    1. Developmental Biology
    2. Neuroscience
    Changtian Ye, Ryan Ho ... James Q Zheng
    Research Article

    Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.

    1. Neuroscience
    Iustin V Tabarean
    Research Article

    Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4–5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.