Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors

  1. Jordana K Thibado
  2. Jean-Yves Tano
  3. Joon Lee
  4. Leslie Salas-Estrada
  5. Davide Provasi
  6. Alexa Strauss
  7. Joao Marcelo Lamim Ribeiro
  8. Guoqing Xiang
  9. Johannes Broichhagen
  10. Marta Filizola
  11. Martin J Lohse
  12. Joshua Levitz  Is a corresponding author
  1. Weill Cornell Graduate School of Medical Sciences, United States
  2. Max Delbrück Center for Molecular Medicine, Germany
  3. Weill Cornell Medicine, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. Forschungsinstitut für Molekulare Pharmakologie, Germany

Abstract

The metabotropic glutamate receptors (mGluRs) form a family of neuromodulatory G protein-coupled receptors that contain both a seven-helix transmembrane domain (TMD) and a large extracellular ligand-binding domain (LBD) which enables stable dimerization. While numerous studies have revealed variability across subtypes in the initial activation steps at the level of LBD dimers, an understanding of inter-TMD interaction and rearrangement remains limited. Here we use a combination of single molecule fluorescence, molecular dynamics, functional assays, and conformational sensors to reveal that distinct TMD assembly properties drive differences between mGluR subtypes. We uncover a variable region within transmembrane helix 4 (TM4) that contributes to homo- and heterodimerization in a subtype-specific manner and tunes orthosteric, allosteric and basal activation. We also confirm a critical role for a conserved inter-TM6 interface in stabilizing the active state during orthosteric or allosteric activation. Together this study shows that inter-TMD assembly and dynamic rearrangement drive mGluR function with distinct properties between subtypes.

Data availability

We have provided source data files for all relevant figures.

Article and author information

Author details

  1. Jordana K Thibado

    Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jean-Yves Tano

    Receptor Signaling Lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Joon Lee

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leslie Salas-Estrada

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Davide Provasi

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2868-303X
  6. Alexa Strauss

    Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joao Marcelo Lamim Ribeiro

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Guoqing Xiang

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Johannes Broichhagen

    Department of Chemical Biology, Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3084-6595
  10. Marta Filizola

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Martin J Lohse

    Receptor Signaling Lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Joshua Levitz

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    For correspondence
    jtl2003@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8169-6323

Funding

National Institute of General Medical Sciences (R35 GM124731)

  • Joshua Levitz

National Science Foundation (GRFP)

  • Jordana K Thibado

National Institute on Drug Abuse (DA038882)

  • Marta Filizola

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Thibado et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,174
    views
  • 320
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordana K Thibado
  2. Jean-Yves Tano
  3. Joon Lee
  4. Leslie Salas-Estrada
  5. Davide Provasi
  6. Alexa Strauss
  7. Joao Marcelo Lamim Ribeiro
  8. Guoqing Xiang
  9. Johannes Broichhagen
  10. Marta Filizola
  11. Martin J Lohse
  12. Joshua Levitz
(2021)
Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors
eLife 10:e67027.
https://doi.org/10.7554/eLife.67027

Share this article

https://doi.org/10.7554/eLife.67027

Further reading

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.

    1. Neuroscience
    François Osiurak, Giovanni Federico ... Mathieu Lesourd
    Research Article

    Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.