Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors

  1. Jordana K Thibado
  2. Jean-Yves Tano
  3. Joon Lee
  4. Leslie Salas-Estrada
  5. Davide Provasi
  6. Alexa Strauss
  7. Joao Marcelo Lamim Ribeiro
  8. Guoqing Xiang
  9. Johannes Broichhagen
  10. Marta Filizola
  11. Martin J Lohse
  12. Joshua Levitz  Is a corresponding author
  1. Weill Cornell Graduate School of Medical Sciences, United States
  2. Max Delbrück Center for Molecular Medicine, Germany
  3. Weill Cornell Medicine, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. Forschungsinstitut für Molekulare Pharmakologie, Germany

Abstract

The metabotropic glutamate receptors (mGluRs) form a family of neuromodulatory G protein-coupled receptors that contain both a seven-helix transmembrane domain (TMD) and a large extracellular ligand-binding domain (LBD) which enables stable dimerization. While numerous studies have revealed variability across subtypes in the initial activation steps at the level of LBD dimers, an understanding of inter-TMD interaction and rearrangement remains limited. Here we use a combination of single molecule fluorescence, molecular dynamics, functional assays, and conformational sensors to reveal that distinct TMD assembly properties drive differences between mGluR subtypes. We uncover a variable region within transmembrane helix 4 (TM4) that contributes to homo- and heterodimerization in a subtype-specific manner and tunes orthosteric, allosteric and basal activation. We also confirm a critical role for a conserved inter-TM6 interface in stabilizing the active state during orthosteric or allosteric activation. Together this study shows that inter-TMD assembly and dynamic rearrangement drive mGluR function with distinct properties between subtypes.

Data availability

We have provided source data files for all relevant figures.

Article and author information

Author details

  1. Jordana K Thibado

    Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jean-Yves Tano

    Receptor Signaling Lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Joon Lee

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leslie Salas-Estrada

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Davide Provasi

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2868-303X
  6. Alexa Strauss

    Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joao Marcelo Lamim Ribeiro

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Guoqing Xiang

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Johannes Broichhagen

    Department of Chemical Biology, Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3084-6595
  10. Marta Filizola

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Martin J Lohse

    Receptor Signaling Lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Joshua Levitz

    Department of Biochemistry, Weill Cornell Medicine, New York, United States
    For correspondence
    jtl2003@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8169-6323

Funding

National Institute of General Medical Sciences (R35 GM124731)

  • Joshua Levitz

National Science Foundation (GRFP)

  • Jordana K Thibado

National Institute on Drug Abuse (DA038882)

  • Marta Filizola

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Janice L Robertson, Washington University in St Louis, United States

Version history

  1. Received: January 29, 2021
  2. Accepted: April 19, 2021
  3. Accepted Manuscript published: April 21, 2021 (version 1)
  4. Version of Record published: May 6, 2021 (version 2)

Copyright

© 2021, Thibado et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,816
    Page views
  • 283
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordana K Thibado
  2. Jean-Yves Tano
  3. Joon Lee
  4. Leslie Salas-Estrada
  5. Davide Provasi
  6. Alexa Strauss
  7. Joao Marcelo Lamim Ribeiro
  8. Guoqing Xiang
  9. Johannes Broichhagen
  10. Marta Filizola
  11. Martin J Lohse
  12. Joshua Levitz
(2021)
Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors
eLife 10:e67027.
https://doi.org/10.7554/eLife.67027

Further reading

    1. Neuroscience
    Amanda J González Segarra, Gina Pontes ... Kristin Scott
    Research Article

    Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.

    1. Neuroscience
    Lucas Y Tian, Timothy L Warren ... Michael S Brainard
    Research Article

    Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.