Altered temporal sequence of transcriptional regulators in the generation of human cerebellar granule cells

Abstract

Brain development is regulated by conserved transcriptional programs across species, but little is known about divergent mechanisms that create species-specific characteristics. Among brain regions, human cerebellar histogenesis differs in complexity compared with non-human primates and rodents, making it important to develop methods to generate human cerebellar neurons that closely resemble those in the developing human cerebellum. We report a rapid protocol for the derivation of the human ATOH1 lineage, the precursor of excitatory cerebellar neurons, from human pluripotent stem cells (hPSC). Upon transplantation into juvenile mice, hPSC-derived cerebellar granule cells migrated along glial fibers and integrated into the cerebellar cortex. By Translational Ribosome Affinity Purification-seq, we identified an unexpected temporal shift in the expression of RBFOX3 (NeuN) and NEUROD1, which are classically associated with differentiated neurons, in the human outer external granule layer. This molecular divergence may enable the protracted development of the human cerebellum compared to mice.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE163710. For reviewers only, a temporary password has been generated: ejkpqqeupdkplcx.Upon publication, the data will be released publicly.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hourinaz Behesti

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9383-9929
  2. Arif Kocabas

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. David E Buchholz

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Mary E Hatten

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    For correspondence
    hatten@rockefeller.edu
    Competing interests
    Mary E Hatten, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9059-660X

Funding

National Institute of Neurological Disorders and Stroke (1R21NS093540-01)

  • Mary E Hatten

The Rockefeller University Center for Clinical and Translational Science (Pilot award)

  • Hourinaz Behesti
  • Mary E Hatten

Starr Foundation (Tri-Institutional Stem Cell Initiative Grant)

  • Mary E Hatten

Department of Defense US Army Medical Research Acquisition Activity Grants (W81XWH1510189)

  • Mary E Hatten

The Robertson Therapeutics Development Fund

  • Mary E Hatten

Renate, Hans, and Maria Hofmann Trust

  • Mary E Hatten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#14746-H) of the Rockefeller University. All surgery was performed under hypothermia, and every effort was made to minimize suffering.

Human subjects: Fixed de-identified human tissue were acquired from the Human Developmental Biology Resource (http://www.hdbr.org/) following institutional policies.

Copyright

© 2021, Behesti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,057
    views
  • 296
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hourinaz Behesti
  2. Arif Kocabas
  3. David E Buchholz
  4. Thomas S Carroll
  5. Mary E Hatten
(2021)
Altered temporal sequence of transcriptional regulators in the generation of human cerebellar granule cells
eLife 10:e67074.
https://doi.org/10.7554/eLife.67074

Share this article

https://doi.org/10.7554/eLife.67074

Further reading

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.