Altered temporal sequence of transcriptional regulators in the generation of human cerebellar granule cells

Abstract

Brain development is regulated by conserved transcriptional programs across species, but little is known about divergent mechanisms that create species-specific characteristics. Among brain regions, human cerebellar histogenesis differs in complexity compared with non-human primates and rodents, making it important to develop methods to generate human cerebellar neurons that closely resemble those in the developing human cerebellum. We report a rapid protocol for the derivation of the human ATOH1 lineage, the precursor of excitatory cerebellar neurons, from human pluripotent stem cells (hPSC). Upon transplantation into juvenile mice, hPSC-derived cerebellar granule cells migrated along glial fibers and integrated into the cerebellar cortex. By Translational Ribosome Affinity Purification-seq, we identified an unexpected temporal shift in the expression of RBFOX3 (NeuN) and NEUROD1, which are classically associated with differentiated neurons, in the human outer external granule layer. This molecular divergence may enable the protracted development of the human cerebellum compared to mice.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE163710. For reviewers only, a temporary password has been generated: ejkpqqeupdkplcx.Upon publication, the data will be released publicly.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hourinaz Behesti

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9383-9929
  2. Arif Kocabas

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. David E Buchholz

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Mary E Hatten

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    For correspondence
    hatten@rockefeller.edu
    Competing interests
    Mary E Hatten, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9059-660X

Funding

National Institute of Neurological Disorders and Stroke (1R21NS093540-01)

  • Mary E Hatten

The Rockefeller University Center for Clinical and Translational Science (Pilot award)

  • Hourinaz Behesti
  • Mary E Hatten

Starr Foundation (Tri-Institutional Stem Cell Initiative Grant)

  • Mary E Hatten

Department of Defense US Army Medical Research Acquisition Activity Grants (W81XWH1510189)

  • Mary E Hatten

The Robertson Therapeutics Development Fund

  • Mary E Hatten

Renate, Hans, and Maria Hofmann Trust

  • Mary E Hatten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#14746-H) of the Rockefeller University. All surgery was performed under hypothermia, and every effort was made to minimize suffering.

Human subjects: Fixed de-identified human tissue were acquired from the Human Developmental Biology Resource (http://www.hdbr.org/) following institutional policies.

Version history

  1. Preprint posted: January 17, 2021 (view preprint)
  2. Received: January 30, 2021
  3. Accepted: November 27, 2021
  4. Accepted Manuscript published: November 29, 2021 (version 1)
  5. Version of Record published: December 20, 2021 (version 2)

Copyright

© 2021, Behesti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,751
    views
  • 263
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hourinaz Behesti
  2. Arif Kocabas
  3. David E Buchholz
  4. Thomas S Carroll
  5. Mary E Hatten
(2021)
Altered temporal sequence of transcriptional regulators in the generation of human cerebellar granule cells
eLife 10:e67074.
https://doi.org/10.7554/eLife.67074

Share this article

https://doi.org/10.7554/eLife.67074

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.