Altered temporal sequence of transcriptional regulators in the generation of human cerebellar granule cells

Abstract

Brain development is regulated by conserved transcriptional programs across species, but little is known about divergent mechanisms that create species-specific characteristics. Among brain regions, human cerebellar histogenesis differs in complexity compared with non-human primates and rodents, making it important to develop methods to generate human cerebellar neurons that closely resemble those in the developing human cerebellum. We report a rapid protocol for the derivation of the human ATOH1 lineage, the precursor of excitatory cerebellar neurons, from human pluripotent stem cells (hPSC). Upon transplantation into juvenile mice, hPSC-derived cerebellar granule cells migrated along glial fibers and integrated into the cerebellar cortex. By Translational Ribosome Affinity Purification-seq, we identified an unexpected temporal shift in the expression of RBFOX3 (NeuN) and NEUROD1, which are classically associated with differentiated neurons, in the human outer external granule layer. This molecular divergence may enable the protracted development of the human cerebellum compared to mice.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE163710. For reviewers only, a temporary password has been generated: ejkpqqeupdkplcx.Upon publication, the data will be released publicly.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hourinaz Behesti

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9383-9929
  2. Arif Kocabas

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. David E Buchholz

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Mary E Hatten

    Laboratory of Developmental Neurobiology, Rockefeller University, New York, United States
    For correspondence
    hatten@rockefeller.edu
    Competing interests
    Mary E Hatten, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9059-660X

Funding

National Institute of Neurological Disorders and Stroke (1R21NS093540-01)

  • Mary E Hatten

The Rockefeller University Center for Clinical and Translational Science (Pilot award)

  • Hourinaz Behesti
  • Mary E Hatten

Starr Foundation (Tri-Institutional Stem Cell Initiative Grant)

  • Mary E Hatten

Department of Defense US Army Medical Research Acquisition Activity Grants (W81XWH1510189)

  • Mary E Hatten

The Robertson Therapeutics Development Fund

  • Mary E Hatten

Renate, Hans, and Maria Hofmann Trust

  • Mary E Hatten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#14746-H) of the Rockefeller University. All surgery was performed under hypothermia, and every effort was made to minimize suffering.

Human subjects: Fixed de-identified human tissue were acquired from the Human Developmental Biology Resource (http://www.hdbr.org/) following institutional policies.

Copyright

© 2021, Behesti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,032
    views
  • 295
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hourinaz Behesti
  2. Arif Kocabas
  3. David E Buchholz
  4. Thomas S Carroll
  5. Mary E Hatten
(2021)
Altered temporal sequence of transcriptional regulators in the generation of human cerebellar granule cells
eLife 10:e67074.
https://doi.org/10.7554/eLife.67074

Share this article

https://doi.org/10.7554/eLife.67074

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Olivia B Taylor, Nicholas DeGroff ... Andy J Fischer
    Research Article

    The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.

    1. Developmental Biology
    Kayleigh Bozon, Hartmut Cuny ... Sally L Dunwoodie
    Research Article

    Congenital malformations can originate from numerous genetic or non-genetic factors but in most cases the causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis causes multiple malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically when organs are forming. While the pathway is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and assessed pathway functionality in embryonic livers and extraembryonic tissues via gene expression, enzyme activity and metabolic analyses. We found that the extra-embryonic visceral yolk sac endoderm exclusively synthesises NAD de novo during early organogenesis before the embryonic liver takes over this function. Under CNDD-inducing conditions, visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles, affecting embryo metabolism. Expression of requisite pathway genes is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryogenesis and its perturbation causes CNDD. As mouse and human yolk sacs are functionally homologous, our data improve the understanding of human congenital malformation causation.