Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions

  1. Anthony S Findley
  2. Alan Monziani
  3. Allison L Richards
  4. Katherine Rhodes
  5. Michelle C Ward
  6. Cynthia A Kalita
  7. Adnan Alazizi
  8. Ali Pazokitoroudi
  9. Sriram Sankararaman
  10. Xiaoquan Wen
  11. David E Lanfear
  12. Roger Pique-Regi  Is a corresponding author
  13. Yoav Gilad  Is a corresponding author
  14. Francesca Luca  Is a corresponding author
  1. Wayne State University, United States
  2. University of Chicago, United States
  3. UCLA, United States
  4. University of Michigan, United States
  5. Henry Ford Hospital, United States

Abstract

Genetic effects on gene expression and splicing can be modulated by cellular and environmental factors; yet interactions between genotypes, cell type and treatment have not been comprehensively studied together. We used an induced pluripotent stem cell system to study multiple cell types derived from the same individuals and exposed them to a large panel of treatments. Cellular responses involved different genes and pathways for gene expression and splicing, and were highly variable across contexts. For thousands of genes, we identified variable allelic expression across contexts and characterized different types of gene-environment interactions, many of which are associated with complex traits. Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance mean and variance. On average half of the genes with dynamic regulatory interactions were missed by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal previously unrecognized regulatory loci that may be important for disease.

Data availability

Sequencing files have been uploaded to the Sequence Read Archive (SRA) under Bioproject PRJNA694697

The following data sets were generated

Article and author information

Author details

  1. Anthony S Findley

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9922-3076
  2. Alan Monziani

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Allison L Richards

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katherine Rhodes

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michelle C Ward

    Medicine, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1485-320X
  6. Cynthia A Kalita

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adnan Alazizi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ali Pazokitoroudi

    Department of Computer Science,, UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sriram Sankararaman

    Department of Computer Science,, UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiaoquan Wen

    University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. David E Lanfear

    Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Roger Pique-Regi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    For correspondence
    rpique@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1262-2275
  13. Yoav Gilad

    Department of Medicine, University of Chicago, Chicago, United States
    For correspondence
    gilad@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8284-8926
  14. Francesca Luca

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    For correspondence
    fluca@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8252-9052

Funding

National Institute of General Medical Sciences (R01GM109215)

  • Roger Pique-Regi
  • Francesca Luca

National Institute of General Medical Sciences (R35GM131726)

  • Yoav Gilad

National Institute of General Medical Sciences (F30GM131580)

  • Anthony S Findley

National Institute of General Medical Sciences (R35GM125055)

  • Sriram Sankararaman

National Science Foundation (III-1705121)

  • Ali Pazokitoroudi
  • Sriram Sankararaman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen CJ Parker, University of Michigan, United States

Version history

  1. Received: February 1, 2021
  2. Accepted: May 13, 2021
  3. Accepted Manuscript published: May 14, 2021 (version 1)
  4. Version of Record published: July 1, 2021 (version 2)

Copyright

© 2021, Findley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,484
    Page views
  • 409
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony S Findley
  2. Alan Monziani
  3. Allison L Richards
  4. Katherine Rhodes
  5. Michelle C Ward
  6. Cynthia A Kalita
  7. Adnan Alazizi
  8. Ali Pazokitoroudi
  9. Sriram Sankararaman
  10. Xiaoquan Wen
  11. David E Lanfear
  12. Roger Pique-Regi
  13. Yoav Gilad
  14. Francesca Luca
(2021)
Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions
eLife 10:e67077.
https://doi.org/10.7554/eLife.67077

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    James T Anderson, Steven Henikoff, Kami Ahmad
    Research Article

    Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Virginia L Pimmett, Mounia Lagha
    Insight

    Imaging experiments reveal the complex and dynamic nature of the transcriptional hubs associated with Notch signaling.