Abstract

T cells use their T-cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self pMHC antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities, and use it to measure the discriminatory power of the TCR, and the factors affecting it. We find that TCR discrimination, although enhanced compared with conventional cell-surface receptors, is imperfect: primary human T cells can respond to pMHC with affinities as low as KD ~1 mM. The kinetic proofreading mechanism fit our data, providing the first estimates of both the time delay (2.8 s) and number of biochemical steps (2.67) that are consistent with the extraordinary sensitivity of antigen recognition. Our findings explain why self pMHC frequently induce autoimmune diseases and anti-tumour responses, and suggest ways to modify TCR discrimination.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 4, S3, and S7 and Table S1 and S2.

Article and author information

Author details

  1. Johannes Pettmann

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1979-8943
  2. Anna Huhn

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Enas Abu Shah

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5033-8171
  4. Mikhail A Kutuzov

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3386-4350
  5. Daniel B Wilson

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Michael L Dustin

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    Michael L Dustin, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4983-6389
  7. Simon J Davis

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. P Anton van der Merwe

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9902-6590
  9. Omer Dushek

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    omer.dushek@path.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5847-5226

Funding

Wellcome Trust (207537/Z/17/Z)

  • Johannes Pettmann
  • Anna Huhn
  • Enas Abu Shah
  • Mikhail A Kutuzov
  • Daniel B Wilson
  • Omer Dushek

Wellcome Trust (098274/Z/12/Z)

  • Simon J Davis

Wellcome Trust (100262Z/12/Z)

  • Michael L Dustin

Wellcome Trust (203737/Z/16/Z)

  • Johannes Pettmann

UCB-Oxford Post-doctoral Fellowship

  • Enas Abu Shah

National Science Foundation Division of Mathematical Sciences USA (NSF-DMS 1902854)

  • Daniel B Wilson

Edward Penley Abraham Trust Studentship

  • Anna Huhn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was provided by the Medical Sciences Inter-divisional Research Ethics Committee (IDREC) at the University of Oxford (R51997/RE001).

Copyright

© 2021, Pettmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,369
    views
  • 1,252
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johannes Pettmann
  2. Anna Huhn
  3. Enas Abu Shah
  4. Mikhail A Kutuzov
  5. Daniel B Wilson
  6. Michael L Dustin
  7. Simon J Davis
  8. P Anton van der Merwe
  9. Omer Dushek
(2021)
The discriminatory power of the T cell receptor
eLife 10:e67092.
https://doi.org/10.7554/eLife.67092

Share this article

https://doi.org/10.7554/eLife.67092

Further reading

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study bias affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Priya M Christensen, Jonathan Martin ... Kelli L Palmer
    Research Article

    Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.