FnCas9 based CRISPR diagnostic for rapid and accurate detection of major SARS-CoV2 variants on a paper strip

Abstract

The COVID-19 pandemic originating in the Wuhan province of China in late 2019 has impacted global health, causing increased mortality among elderly patients and individuals with comorbid conditions. During the passage of the virus through affected populations, it has undergone mutations, some of which have recently been linked with increased viral load and prognostic complexities. Several of these variants are point mutations that are difficult to diagnose using the gold standard quantitative real-time PCR (qRT-PCR) method and necessitates widespread sequencing which is expensive, has long turn-around times, and requires high viral load for calling mutations accurately. Here, we repurpose the high specificity of Francisella novicida Cas9 (FnCas9) to identify mismatches in the target for developing a lateral flow assay that can be successfully adapted for the simultaneous detection of SARS-CoV2 infection as well as for detecting point mutations in the sequence of the virus obtained from patient samples. We report the detection of the S gene mutation N501Y (present across multiple variant lineages of SARS-CoV2) within an hour using lateral flow paper strip chemistry. The results were corroborated using deep sequencing on multiple wild type (n=37) and mutant (n=22) viral RNA samples with a sensitivity of 87% and specificity of 97%. The design principle can be rapidly adapted for other mutations (as shown also for E484K and T716I) highlighting the advantages of quick optimization and roll-out of CRISPR diagnostics (CRISPRDx) for disease surveillance even beyond COVID-19. This study was funded by Council for Scientific and Industrial Research, India.

Data availability

Sequencing data associated with the manuscript have been deposited to GISAID with the following numbers:EPI_ISL_911542, EPI_ISL_911532, EPI_ISL_911543, EPI_ISL_911533, EPI_ISL_911544, EPI_ISL_911534, EPI_ISL_911545, EPI_ISL_911535, EPI_ISL_911546, EPI_ISL_911536, EPI_ISL_911547, EPI_ISL_911537, EPI_ISL_911538, EPI_ISL_911540, EPI_ISL_911541, EPI_ISL_911539 were just released and are now available to all participants in GISAID.

Article and author information

Author details

  1. Manoj Kumar

    in, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0772-1399
  2. Sneha Gulati

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
  3. Asgar H Ansari

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
  4. Rhythm Phutela

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
  5. Sundaram Acharya

    IGIB, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    No competing interests declared.
  6. Mohd Azhar

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    Mohd Azhar, Mohd. Azhar is currently an employee of TATA Medical and Diagnostics.
  7. Jayaram Murthy

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
  8. Poorti Kathpalia

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
  9. Akshay Kanakan

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
  10. Ranjeet Maurya

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
  11. Janani Srinivasa Vasudevan

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3381-5228
  12. Aparna Murali

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    No competing interests declared.
  13. Rajesh Pandey

    CSIR Ayurgenomics Unit (TRISUTRA), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    No competing interests declared.
  14. Souvik Maiti

    Chemical and Systems Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
    For correspondence
    souvik@igib.res.in
    Competing interests
    No competing interests declared.
  15. Debojyoti Chakraborty

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    For correspondence
    debojyoti.chakraborty@igib.in
    Competing interests
    Debojyoti Chakraborty, A patent application has been filed in relation to this work. (0127NF2019)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1460-7594

Funding

University Grants Commission (Graduate student fellowship)

  • Manoj Kumar

IUSSTF (CLP-0033)

  • Rajesh Pandey

CSIR Sickle Cell Anemia Mission (HCP0008)

  • Debojyoti Chakraborty

Tata Steel (SSP 2001)

  • Debojyoti Chakraborty

Lady Tata Young Investigator (GAP0198)

  • Debojyoti Chakraborty

CSIR Sickle Cell Anemia Mission (HCP0008)

  • Souvik Maiti

CSIR (Graduate Student fellowship)

  • Mohd Azhar

CSIR (Graduate Student fellowship)

  • Jayaram Murthy

CSIR (Research Associateship)

  • Sneha Gulati

Indian Council of Medical Research (Graduate Student fellowship)

  • Asgar H Ansari

CSIR (Graduate Student fellowship)

  • Rhythm Phutela

CSIR (Graduate Student fellowship)

  • Sundaram Acharya

CSIR (Research Associateship)

  • Poorti Kathpalia

CSIR (MLP 2005)

  • Rajesh Pandey

Fondation Botnar (CLP-0031)

  • Rajesh Pandey

Intel Corporation (CLP-0034)

  • Rajesh Pandey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The present study was approved by the Ethics Committee, Institute of Genomics and Integrative Biology, New Delhi (CSIR-IGIB/IHEC/2020-21/01.)

Reviewing Editor

  1. Yamuna Krishnan, University of Chicago, United States

Version history

  1. Received: February 1, 2021
  2. Accepted: June 7, 2021
  3. Accepted Manuscript published: June 9, 2021 (version 1)
  4. Version of Record published: July 19, 2021 (version 2)

Copyright

© 2021, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,614
    Page views
  • 668
    Downloads
  • 44
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manoj Kumar
  2. Sneha Gulati
  3. Asgar H Ansari
  4. Rhythm Phutela
  5. Sundaram Acharya
  6. Mohd Azhar
  7. Jayaram Murthy
  8. Poorti Kathpalia
  9. Akshay Kanakan
  10. Ranjeet Maurya
  11. Janani Srinivasa Vasudevan
  12. Aparna Murali
  13. Rajesh Pandey
  14. Souvik Maiti
  15. Debojyoti Chakraborty
(2021)
FnCas9 based CRISPR diagnostic for rapid and accurate detection of major SARS-CoV2 variants on a paper strip
eLife 10:e67130.
https://doi.org/10.7554/eLife.67130

Further reading

    1. Biochemistry and Chemical Biology
    2. Epidemiology and Global Health
    Takashi Sasaki, Yoshinori Nishimoto ... Yasumichi Arai
    Research Article

    Background: High levels of circulating adiponectin are associated with increased insulin sensitivity, low prevalence of diabetes, and low body mass index (BMI); however, high levels of circulating adiponectin are also associated with increased mortality in the 60-70 age group. In this study, we aimed to clarify factors associated with circulating high-molecular-weight (cHMW) adiponectin levels and their association with mortality in the very old (85-89 years old) and centenarians.

    Methods: The study included 812 (women: 84.4%) for centenarians and 1,498 (women: 51.7%) for the very old. The genomic DNA sequence data were obtained by whole genome sequencing or DNA microarray-imputation methods. LASSO and multivariate regression analyses were used to evaluate cHMW adiponectin characteristics and associated factors. All-cause mortality was analyzed in three quantile groups of cHMW adiponectin levels using Cox regression.

    Results: The cHMW adiponectin levels were increased significantly beyond 100 years of age, were negatively associated with diabetes prevalence, and were associated with SNVs in CDH13 (p = 2.21 × 10-22) and ADIPOQ (p = 5.72 × 10-7). Multivariate regression analysis revealed that genetic variants, BMI, and high-density lipoprotein cholesterol (HDLC) were the main factors associated with cHMW adiponectin levels in the very old, whereas the BMI showed no association in centenarians. The hazard ratios for all-cause mortality in the intermediate and high cHMW adiponectin groups in very old men were significantly higher rather than those for all-cause mortality in the low level cHMW adiponectin group, even after adjustment with BMI. In contrast, the hazard ratios for all-cause mortality were significantly higher for high cHMW adiponectin groups in very old women, but were not significant after adjustment with BMI.

    Conclusions: cHMW adiponectin levels increased with age until centenarians, and the contribution of known major factors associated with cHMW adiponectin levels, including BMI and HDLC, varies with age, suggesting that its physiological significance also varies with age in the oldest old.

    Funding: This study was supported by grants from the Ministry of Health, Welfare, and Labour for the Scientific Research Projects for Longevity; a Grant-in-Aid for Scientific Research (No 21590775, 24590898, 15KT0009, 18H03055, 20K20409, 20K07792, 23H03337) from the Japan Society for the Promotion of Science; Keio University Global Research Institute (KGRI), Kanagawa Institute of Industrial Science and Technology (KISTEC), Japan Science and Technology Agency (JST) Research Complex Program 'Tonomachi Research Complex' Wellbeing Research Campus: Creating new values through technological and social innovation (JP15667051), the Program for an Integrated Database of Clinical and Genomic Information from the Japan Agency for Medical Research and Development (No. 16kk0205009h001, 17jm0210051h0001, 19dk0207045h0001); the medical-welfare-food-agriculture collaborative consortium project from the Japan Ministry of Agriculture, Forestry, and Fisheries; and the Biobank Japan Program from the Ministry of Education, Culture, Sports, and Technology.

    1. Epidemiology and Global Health
    Charumathi Sabanayagam, Feng He ... Ching Yu Cheng
    Research Article Updated

    Background:

    Machine learning (ML) techniques improve disease prediction by identifying the most relevant features in multidimensional data. We compared the accuracy of ML algorithms for predicting incident diabetic kidney disease (DKD).

    Methods:

    We utilized longitudinal data from 1365 Chinese, Malay, and Indian participants aged 40–80 y with diabetes but free of DKD who participated in the baseline and 6-year follow-up visit of the Singapore Epidemiology of Eye Diseases Study (2004–2017). Incident DKD (11.9%) was defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 with at least 25% decrease in eGFR at follow-up from baseline. A total of 339 features, including participant characteristics, retinal imaging, and genetic and blood metabolites, were used as predictors. Performances of several ML models were compared to each other and to logistic regression (LR) model based on established features of DKD (age, sex, ethnicity, duration of diabetes, systolic blood pressure, HbA1c, and body mass index) using area under the receiver operating characteristic curve (AUC).

    Results:

    ML model Elastic Net (EN) had the best AUC (95% CI) of 0.851 (0.847–0.856), which was 7.0% relatively higher than by LR 0.795 (0.790–0.801). Sensitivity and specificity of EN were 88.2 and 65.9% vs. 73.0 and 72.8% by LR. The top 15 predictors included age, ethnicity, antidiabetic medication, hypertension, diabetic retinopathy, systolic blood pressure, HbA1c, eGFR, and metabolites related to lipids, lipoproteins, fatty acids, and ketone bodies.

    Conclusions:

    Our results showed that ML, together with feature selection, improves prediction accuracy of DKD risk in an asymptomatic stable population and identifies novel risk factors, including metabolites.

    Funding:

    This study was supported by the National Medical Research Council, NMRC/OFLCG/001/2017 and NMRC/HCSAINV/MOH-001019-00. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.