Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner

  1. Kang-Ying Qian
  2. Wan-Xin Zeng
  3. Yue Hao
  4. Xian-Ting Zeng
  5. Haowen Liu
  6. Lei Li
  7. Lili Chen
  8. Fu-min Tian
  9. Cindy Chang
  10. Qi Hall
  11. Chun-Xue Song
  12. Shangbang Gao
  13. Zhi-Tao Hu
  14. Josh M Kaplan
  15. Qian Li  Is a corresponding author
  16. Xia-Jing Tong  Is a corresponding author
  1. ShanghaiTech University, China
  2. The University of Queensland, Australia
  3. College of Life Science and Technology, China
  4. Massachusetts General Hospital, United States
  5. Shanghai Jiao Tong University School of Medicine, China

Abstract

The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in C. elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites' locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided. For other information (such as primers), we already included them in the methods.

Article and author information

Author details

  1. Kang-Ying Qian

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wan-Xin Zeng

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yue Hao

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xian-Ting Zeng

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Haowen Liu

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Lei Li

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Lili Chen

    Huazhong University of Science and Tehcnology, College of Life Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Fu-min Tian

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Cindy Chang

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Qi Hall

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Chun-Xue Song

    Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Shangbang Gao

    Huazhong University of Science and Tehcnology, College of Life Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5431-4628
  13. Zhi-Tao Hu

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2948-3339
  14. Josh M Kaplan

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7418-7179
  15. Qian Li

    Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    For correspondence
    liqian@shsmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1300-3377
  16. Xia-Jing Tong

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    For correspondence
    tongxj@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5634-1136

Funding

Basic Research Project from the Science and Technology Commission (19JC1414100)

  • Xia-Jing Tong

Shanghai Pujiang Program (18PJ1407600)

  • Xia-Jing Tong

Shanghai Pujiang Program (17PJ1405400)

  • Qian Li

Shanghai Brain-Intelligence Project from the Science and Technology Commission of Shanghai Municipality (18JC1420302)

  • Qian Li

Program for Special Appointment at Shanghai Institutions of Higher Learning (QD2018017)

  • Qian Li

Innovative research team of high-level local universities in Shanghai, National Institute of Neurological Disorder and Stroke (NS32196)

  • Josh M Kaplan

National Institutes of Health research grant (NEI 1R21EY029450-01)

  • Josh M Kaplan

National Health and Medical Research Council (APP1122351)

  • Zhi-Tao Hu

National Natural Science Foundation of China (31741054)

  • Xia-Jing Tong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,977
    views
  • 309
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kang-Ying Qian
  2. Wan-Xin Zeng
  3. Yue Hao
  4. Xian-Ting Zeng
  5. Haowen Liu
  6. Lei Li
  7. Lili Chen
  8. Fu-min Tian
  9. Cindy Chang
  10. Qi Hall
  11. Chun-Xue Song
  12. Shangbang Gao
  13. Zhi-Tao Hu
  14. Josh M Kaplan
  15. Qian Li
  16. Xia-Jing Tong
(2021)
Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner
eLife 10:e67170.
https://doi.org/10.7554/eLife.67170

Share this article

https://doi.org/10.7554/eLife.67170

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.