Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner

  1. Kang-Ying Qian
  2. Wan-Xin Zeng
  3. Yue Hao
  4. Xian-Ting Zeng
  5. Haowen Liu
  6. Lei Li
  7. Lili Chen
  8. Fu-min Tian
  9. Cindy Chang
  10. Qi Hall
  11. Chun-Xue Song
  12. Shangbang Gao
  13. Zhi-Tao Hu
  14. Josh M Kaplan
  15. Qian Li  Is a corresponding author
  16. Xia-Jing Tong  Is a corresponding author
  1. ShanghaiTech University, China
  2. The University of Queensland, Australia
  3. College of Life Science and Technology, China
  4. Massachusetts General Hospital, United States
  5. Shanghai Jiao Tong University School of Medicine, China

Abstract

The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in C. elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites' locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided. For other information (such as primers), we already included them in the methods.

Article and author information

Author details

  1. Kang-Ying Qian

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wan-Xin Zeng

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yue Hao

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xian-Ting Zeng

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Haowen Liu

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Lei Li

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Lili Chen

    Huazhong University of Science and Tehcnology, College of Life Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Fu-min Tian

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Cindy Chang

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Qi Hall

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Chun-Xue Song

    Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Shangbang Gao

    Huazhong University of Science and Tehcnology, College of Life Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5431-4628
  13. Zhi-Tao Hu

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2948-3339
  14. Josh M Kaplan

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7418-7179
  15. Qian Li

    Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    For correspondence
    liqian@shsmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1300-3377
  16. Xia-Jing Tong

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    For correspondence
    tongxj@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5634-1136

Funding

Basic Research Project from the Science and Technology Commission (19JC1414100)

  • Xia-Jing Tong

Shanghai Pujiang Program (18PJ1407600)

  • Xia-Jing Tong

Shanghai Pujiang Program (17PJ1405400)

  • Qian Li

Shanghai Brain-Intelligence Project from the Science and Technology Commission of Shanghai Municipality (18JC1420302)

  • Qian Li

Program for Special Appointment at Shanghai Institutions of Higher Learning (QD2018017)

  • Qian Li

Innovative research team of high-level local universities in Shanghai, National Institute of Neurological Disorder and Stroke (NS32196)

  • Josh M Kaplan

National Institutes of Health research grant (NEI 1R21EY029450-01)

  • Josh M Kaplan

National Health and Medical Research Council (APP1122351)

  • Zhi-Tao Hu

National Natural Science Foundation of China (31741054)

  • Xia-Jing Tong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Douglas Portman, University of Rochester, United States

Version history

  1. Received: February 2, 2021
  2. Accepted: March 30, 2021
  3. Accepted Manuscript published: March 31, 2021 (version 1)
  4. Version of Record published: April 16, 2021 (version 2)

Copyright

© 2021, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,828
    Page views
  • 290
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kang-Ying Qian
  2. Wan-Xin Zeng
  3. Yue Hao
  4. Xian-Ting Zeng
  5. Haowen Liu
  6. Lei Li
  7. Lili Chen
  8. Fu-min Tian
  9. Cindy Chang
  10. Qi Hall
  11. Chun-Xue Song
  12. Shangbang Gao
  13. Zhi-Tao Hu
  14. Josh M Kaplan
  15. Qian Li
  16. Xia-Jing Tong
(2021)
Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner
eLife 10:e67170.
https://doi.org/10.7554/eLife.67170

Share this article

https://doi.org/10.7554/eLife.67170

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.