High-resolution, genome-wide mapping of positive supercoiling in chromosomes

  1. Monica S Guo  Is a corresponding author
  2. Ryo Kawamura
  3. Megan L Littlehale
  4. John F Marko
  5. Michael T Laub  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Northwestern University, United States

Abstract

Supercoiling impacts DNA replication, transcription, protein binding to DNA, and the three-dimensional organization of chromosomes. However, there are currently no methods to directly interrogate or map positive supercoils, so their distribution in genomes remains unknown. Here, we describe a method, GapR-seq, based on the chromatin immunoprecipitation of GapR, a bacterial protein that preferentially recognizes overtwisted DNA, for generating high-resolution maps of positive supercoiling. Applying this method to E. coli and S. cerevisiae, we find that positive supercoiling is widespread, associated with transcription, and particularly enriched between convergently-oriented genes, consistent with the 'twin-domain' model of supercoiling. In yeast, we also find positive supercoils associated with centromeres, cohesin binding sites, autonomously replicating sites, and the borders of R-loops (DNA-RNA hybrids). Our results suggest that GapR-seq is a powerful approach, likely applicable in any organism, to investigate aspects of chromosome structure and organization not accessible by Hi-C or other existing methods.

Data availability

Datasets generated during this study are deposited at the Gene Expression Omnibus (GEO): GSE152882.

The following data sets were generated

Article and author information

Author details

  1. Monica S Guo

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    msguo@mit.edu
    Competing interests
    No competing interests declared.
  2. Ryo Kawamura

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  3. Megan L Littlehale

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. John F Marko

    Department of Molecular Biosciences, Department of Physics and Astronomy, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4151-9530
  5. Michael T Laub

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    laub@mit.edu
    Competing interests
    Michael T Laub, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8288-7607

Funding

National Institutes of Health (K99GM134153)

  • Monica S Guo

National Institutes of Health (U54CA193419)

  • John F Marko

National Institutes of Health (U54DK107980)

  • John F Marko

National Institutes of Health (R01GM082899)

  • Michael T Laub

National Institutes of Health (S10OD026741)

  • Monica S Guo

Howard Hughes Medical Institute (Investigator)

  • Michael T Laub

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. James M Berger, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: February 4, 2021
  2. Preprint posted: February 25, 2021 (view preprint)
  3. Accepted: July 16, 2021
  4. Accepted Manuscript published: July 19, 2021 (version 1)
  5. Version of Record published: August 12, 2021 (version 2)

Copyright

© 2021, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,774
    views
  • 756
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monica S Guo
  2. Ryo Kawamura
  3. Megan L Littlehale
  4. John F Marko
  5. Michael T Laub
(2021)
High-resolution, genome-wide mapping of positive supercoiling in chromosomes
eLife 10:e67236.
https://doi.org/10.7554/eLife.67236

Share this article

https://doi.org/10.7554/eLife.67236

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.