1. Chromosomes and Gene Expression
Download icon

High-resolution, genome-wide mapping of positive supercoiling in chromosomes

  1. Monica S Guo  Is a corresponding author
  2. Ryo Kawamura
  3. Megan L Littlehale
  4. John F Marko
  5. Michael T Laub  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Northwestern University, United States
Research Article
  • Cited 3
  • Views 1,810
  • Annotations
Cite this article as: eLife 2021;10:e67236 doi: 10.7554/eLife.67236

Abstract

Supercoiling impacts DNA replication, transcription, protein binding to DNA, and the three-dimensional organization of chromosomes. However, there are currently no methods to directly interrogate or map positive supercoils, so their distribution in genomes remains unknown. Here, we describe a method, GapR-seq, based on the chromatin immunoprecipitation of GapR, a bacterial protein that preferentially recognizes overtwisted DNA, for generating high-resolution maps of positive supercoiling. Applying this method to E. coli and S. cerevisiae, we find that positive supercoiling is widespread, associated with transcription, and particularly enriched between convergently-oriented genes, consistent with the 'twin-domain' model of supercoiling. In yeast, we also find positive supercoils associated with centromeres, cohesin binding sites, autonomously replicating sites, and the borders of R-loops (DNA-RNA hybrids). Our results suggest that GapR-seq is a powerful approach, likely applicable in any organism, to investigate aspects of chromosome structure and organization not accessible by Hi-C or other existing methods.

Data availability

Datasets generated during this study are deposited at the Gene Expression Omnibus (GEO): GSE152882.

The following data sets were generated

Article and author information

Author details

  1. Monica S Guo

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    msguo@mit.edu
    Competing interests
    No competing interests declared.
  2. Ryo Kawamura

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  3. Megan L Littlehale

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. John F Marko

    Department of Molecular Biosciences, Department of Physics and Astronomy, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4151-9530
  5. Michael T Laub

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    laub@mit.edu
    Competing interests
    Michael T Laub, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8288-7607

Funding

National Institutes of Health (K99GM134153)

  • Monica S Guo

National Institutes of Health (U54CA193419)

  • John F Marko

National Institutes of Health (U54DK107980)

  • John F Marko

National Institutes of Health (R01GM082899)

  • Michael T Laub

National Institutes of Health (S10OD026741)

  • Monica S Guo

Howard Hughes Medical Institute (Investigator)

  • Michael T Laub

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. James M Berger, Johns Hopkins University School of Medicine, United States

Publication history

  1. Received: February 4, 2021
  2. Preprint posted: February 25, 2021 (view preprint)
  3. Accepted: July 16, 2021
  4. Accepted Manuscript published: July 19, 2021 (version 1)
  5. Version of Record published: August 12, 2021 (version 2)

Copyright

© 2021, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,810
    Page views
  • 351
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Juliane Glaser et al.
    Research Article

    Genomic imprinting refers to the mono-allelic and parent-specific expression of a subset of genes. While long recognized for their role in embryonic development, imprinted genes have recently emerged as important modulators of postnatal physiology, notably through hypothalamus-driven functions. Here, using mouse models of loss, gain and parental inversion of expression, we report that the paternally expressed Zdbf2 gene controls neonatal growth in mice, in a dose-sensitive but parent-of-origin-independent manner. We further found that Zdbf2-KO neonates failed to fully activate hypothalamic circuits that stimulate appetite, and suffered milk deprivation and diminished circulating Insulin Growth Factor 1 (IGF-1). Consequently, only half of Zdbf2-KO pups survived the first days after birth and those surviving were smaller. This study demonstrates that precise imprinted gene dosage is essential for vital physiological functions at the transition from intra- to extra-uterine life, here the adaptation to oral feeding and optimized body weight gain.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Zeyang Shen et al.
    Research Article

    Regulation of gene expression requires the combinatorial binding of sequence-specific transcription factors (TFs) at promoters and enhancers. Prior studies showed that alterations in the spacing between TF binding sites can influence promoter and enhancer activity. However, the relative importance of TF spacing alterations resulting from naturally occurring insertions and deletions (InDels) has not been systematically analyzed. To address this question, we first characterized the genome-wide spacing relationships of 73 TFs in human K562 cells as determined by ChIP-seq. We found a dominant pattern of a relaxed range of spacing between collaborative factors, including 45 TFs exclusively exhibiting relaxed spacing with their binding partners. Next, we exploited millions of InDels provided by genetically diverse mouse strains and human individuals to investigate the effects of altered spacing on TF binding and local histone acetylation. These analyses suggested that spacing alterations resulting from naturally occurring InDels are generally tolerated in comparison to genetic variants directly affecting TF binding sites. To experimentally validate this prediction, we introduced synthetic spacing alterations between PU.1 and C/EBPβ binding sites at six endogenous genomic loci in a macrophage cell line. Remarkably, collaborative binding of PU.1 and C/EBPβ at these locations tolerated changes in spacing ranging from 5-bp increase to >30-bp decrease. Collectively, these findings have implications for understanding mechanisms underlying enhancer selection and for the interpretation of non-coding genetic variation.