Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex

  1. Peter Christiaan Klink  Is a corresponding author
  2. Xing Chen
  3. Vim Vanduffel
  4. Pieter Roelfsema
  1. Netherlands Institute for Neuroscience, Netherlands
  2. KU Leuven Medical School, Belgium

Abstract

Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF-maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake non-human primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF-models based on the fMRI BOLD-signal, multi-unit spiking activity (MUA) and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. FMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF-size with increasing eccentricity, as well as a retinotopically specific deactivation of default-mode network nodes similar to previous observations in humans.

Data availability

- All data and code are available on GIN: https://doi.org/10.12751/g-node.p8ypgv- Unthresholded fMRI model fitting results are available on Neurovault: https://identifiers.org/neurovault.collection:8082

Article and author information

Author details

  1. Peter Christiaan Klink

    Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    For correspondence
    c.klink@nin.knaw.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6784-7842
  2. Xing Chen

    Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3589-1750
  3. Vim Vanduffel

    KU Leuven Medical School, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Pieter Roelfsema

    Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1625-0034

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VENI 451.13.023)

  • Peter Christiaan Klink

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (STW-Perspectief P15-42 NESTOR"")

  • Xing Chen
  • Pieter Roelfsema

FP7 Ideas: European Research Council (ERC 339490 Cortic_al_gorithms"")

  • Pieter Roelfsema

Human Brain Project ((agreements 720270 and 785907,Human Brain Project SGA1 and SGA2"")

  • Vim Vanduffel
  • Pieter Roelfsema

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Crossover Program 17619 INTENSE"")

  • Peter Christiaan Klink
  • Pieter Roelfsema

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and experimental procedures were in accordance with the ILAR's Guide for the Care and Use of Laboratory Animals, the European legislation (Directive 2010/63/EU) and approved by the institutional animal care and use committee of the Royal Netherlands Academy of Arts and Sciences and the Central Authority for Scientific Procedures on Animals (CCD) in the Netherlands (License numbers AVD8010020173789 and AVD8010020171046).

Reviewing Editor

  1. Kristine Krug, University of Oxford, United Kingdom

Publication history

  1. Preprint posted: September 8, 2020 (view preprint)
  2. Received: February 7, 2021
  3. Accepted: October 24, 2021
  4. Accepted Manuscript published: November 3, 2021 (version 1)
  5. Accepted Manuscript updated: November 4, 2021 (version 2)
  6. Version of Record published: December 3, 2021 (version 3)

Copyright

© 2021, Klink et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,474
    Page views
  • 245
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter Christiaan Klink
  2. Xing Chen
  3. Vim Vanduffel
  4. Pieter Roelfsema
(2021)
Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex
eLife 10:e67304.
https://doi.org/10.7554/eLife.67304

Further reading

    1. Cell Biology
    2. Neuroscience
    Jinye Dai, Kif Liakath-Ali ... Thomas C Südhof
    Research Article

    At CA1→subiculum synapses, alternatively spliced neurexin-1 (Nrxn1SS4+) and neurexin-3 (Nrxn3SS4+) enhance NMDA-receptors and suppress AMPA-receptors, respectively, without affecting synapse formation. Nrxn1SS4+ and Nrxn3SS4+ act by binding to secreted cerebellin-2 (Cbln2) that in turn activates postsynaptic GluD1 receptors. Whether neurexin-Cbln2-GluD1 signaling has additional functions besides regulating NMDA- and AMPA-receptors, and whether such signaling performs similar roles at other synapses, however, remains unknown. Here, we demonstrate using constitutive Cbln2 deletions in mice that at CA1→subiculum synapses, Cbln2 performs no additional developmental roles besides regulating AMPA- and NMDA-receptors. Moreover, low-level expression of functionally redundant Cbln1 did not compensate for a possible synapse-formation function of Cbln2 at CA1→subiculum synapses. In exploring the generality of these findings, we examined the prefrontal cortex where Cbln2 was recently implicated in spinogenesis, and the cerebellum where Cbln1 is known to regulate parallel-fiber synapses. In the prefrontal cortex, Nrxn1SS4+-Cbln2 signaling selectively controlled NMDA-receptors without affecting spine or synapse numbers, whereas Nrxn3SS4+-Cbln2 signaling had no apparent role. In the cerebellum, conversely, Nrxn3SS4+-Cbln1 signaling regulated AMPA-receptors, whereas now Nrxn1SS4+-Cbln1 signaling had no manifest effect. Thus, Nrxn1SS4+- and Nrxn3SS4+-Cbln1/2 signaling complexes differentially control NMDA- and AMPA-receptors in different synapses in diverse neural circuits without regulating synapse or spine formation.

    1. Neuroscience
    Alison R Weiss, William A Liguore ... Jodi L McBride
    Research Article

    We created a new nonhuman primate model of the genetic neurodegenerative disorder Huntington’s disease (HD) by injecting a mixture of recombinant adeno-associated viral vectors, serotypes AAV2 and AAV2.retro, each expressing a fragment of human mutant HTT (mHTT) into the caudate and putamen of adult rhesus macaques. This modeling strategy results in expression of mutant huntingtin protein (mHTT) and aggregate formation in the injected brain regions, as well as dozens of other cortical and subcortical brain regions affected in human HD patients. We queried the disruption of cortico-basal ganglia circuitry for 30 months post-surgery using a variety of behavioral and imaging readouts. Compared to controls, mHTT-treated macaques developed working memory decline and progressive motor impairment. Multimodal imaging revealed circuit-wide white and gray matter degenerative processes in several key brain regions affected in HD. Taken together, we have developed a novel macaque model of HD that may be used to develop disease biomarkers and screen promising therapeutics.