Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility

  1. Zhongwen Chen
  2. Dongmyung Oh
  3. Kabir Hassan Biswas  Is a corresponding author
  4. Ronen Zaidel-Bar  Is a corresponding author
  5. Jay T Groves  Is a corresponding author
  1. Fudan University, China
  2. National University of Singapore, Singapore
  3. Hamad Bin Khalifa University, Qatar
  4. Tel Aviv University, Israel
  5. University of California, Berkeley, United States

Abstract

Clustering of ligand:receptor complexes on the cell membrane is widely presumed to have functional consequences for subsequent signal transduction. However, it is experimentally challenging to selectively manipulate receptor clustering without altering other biochemical aspects of the cellular system. Here, we develop a microfabrication strategy to produce substrates displaying mobile and immobile ligands that are separated by roughly one micron, and thus experience an identical cytoplasmic signaling state, enabling precision comparison of downstream signaling reactions. Applying this approach to characterize the ephrinA1:EphA2 signaling system reveals that EphA2 clustering enhances both receptor phosphorylation and downstream signaling activity. Single molecule imaging clearly resolves increased molecular binding dwell times at EphA2 clusters for both Grb2:SOS and NCK:N-WASP signaling modules. This type of intracellular comparison enables a substantially higher degree of quantitative analysis than is possible when comparisons must be made between different cells and essentially eliminates the effects of cellular response to ligand manipulation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, and 5.

Article and author information

Author details

  1. Zhongwen Chen

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5218-0152
  2. Dongmyung Oh

    National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0817-5254
  3. Kabir Hassan Biswas

    Mechanobiology Institute, Hamad Bin Khalifa University, Doha, Qatar
    For correspondence
    kbiswas@hbku.edu.qa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9194-4127
  4. Ronen Zaidel-Bar

    Tel Aviv University, Tel Aviv, Israel
    For correspondence
    zaidelbar@tauex.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
  5. Jay T Groves

    QB3, University of California, Berkeley, Berkeley, United States
    For correspondence
    JTGroves@lbl.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3037-5220

Funding

National Cancer Institute (Physical Sciences in Oncology Network Project 1-U01CA202241)

  • Zhongwen Chen
  • Jay T Groves

national science foundation Singapore (CRP001-084)

  • Zhongwen Chen
  • Dongmyung Oh
  • Ronen Zaidel-Bar
  • Jay T Groves

Shanghai Municipal Science and Technology Major Project (ZJLab (2018SHZDZX01))

  • Zhongwen Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,987
    views
  • 289
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhongwen Chen
  2. Dongmyung Oh
  3. Kabir Hassan Biswas
  4. Ronen Zaidel-Bar
  5. Jay T Groves
(2021)
Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility
eLife 10:e67379.
https://doi.org/10.7554/eLife.67379

Share this article

https://doi.org/10.7554/eLife.67379

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Divyoj Singh, Sriram Ramaswamy ... Mohd Suhail Rizvi
    Research Article

    Planar cell polarity (PCP) – tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface – is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules – broadly classified into “global” and “local” modules – have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment – a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - the rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Maria Cristina Cannarsa, Filippo Liguori ... Roberto Di Leonardo
    Research Article

    Synthetic genetic oscillators can serve as internal clocks within engineered cells to program periodic expression. However, cell-to-cell variability introduces a dispersion in the characteristics of these clocks that drives the population to complete desynchronization. Here, we introduce the optorepressilator, an optically controllable genetic clock that combines the repressilator, a three-node synthetic network in E. coli, with an optogenetic module enabling to reset, delay, or advance its phase using optical inputs. We demonstrate that a population of optorepressilators can be synchronized by transient green light exposure or entrained to oscillate indefinitely by a train of short pulses, through a mechanism reminiscent of natural circadian clocks. Furthermore, we investigate the system’s response to detuned external stimuli observing multiple regimes of global synchronization. Integrating experiments and mathematical modeling, we show that the entrainment mechanism is robust and can be understood quantitatively from single cell to population level.