Cdc4 phospho-degrons allow differential regulation of Ame1CENP-U protein stability across the cell cycle

  1. Miriam Böhm
  2. Kerstin Killinger
  3. Alexander Dudziak
  4. Pradeep Pant
  5. Karolin Jänen
  6. Simone Hohoff
  7. Karl Mechtler
  8. Mihkel Örd
  9. Mart Loog
  10. Elsa Sanchez-Garcia
  11. Stefan Westermann  Is a corresponding author
  1. University of Duisburg-Essen, Germany
  2. Research Institute of Molecular Pathology, Austria
  3. University of Tartu, Estonia

Abstract

Kinetochores are multi-subunit protein assemblies that link chromosomes to microtubules of the mitotic and meiotic spindle. It is still poorly understood how efficient, centromere-dependent kinetochore assembly is accomplished from hundreds of individual protein building blocks in a cell cycle dependent manner. Here, by combining comprehensive phosphorylation analysis of native Ctf19CCAN subunits with biochemical and functional assays in the model system budding yeast, we demonstrate that Cdk1 phosphorylation activates phospho-degrons on the essential subunit Ame1CENP-U which are recognized by the E3 ubiquitin ligase complex SCF-Cdc4. Gradual phosphorylation of degron motifs culminates in M-Phase and targets the protein for degradation. Binding of the Mtw1Mis12 complex shields the proximal phospho-degron, protecting kinetochore-bound Ame1 from the degradation machinery. Artificially increasing degron strength partially suppresses the temperature-sensitivity of a cdc4 mutant, while overexpression of Ame1-Okp1 is toxic in SCF mutants, demonstrating the physiological importance of this mechanism. We propose that phospho-regulated clearance of excess CCAN subunits facilitates efficient centromere-dependent kinetochore assembly. Our results suggest a novel strategy for how phospho-degrons can be used to regulate the assembly of multi-subunit complexes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Miriam Böhm

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6054-1912
  2. Kerstin Killinger

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Dudziak

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5082-3468
  4. Pradeep Pant

    Computational Biochemistry, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3890-1958
  5. Karolin Jänen

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Simone Hohoff

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Karl Mechtler

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Mihkel Örd

    Institute of Technology, University of Tartu, Tartu, Estonia
    Competing interests
    The authors declare that no competing interests exist.
  9. Mart Loog

    Institute of Technology, University of Tartu, Tartu, Estonia
    Competing interests
    The authors declare that no competing interests exist.
  10. Elsa Sanchez-Garcia

    Computational Biochemisty, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9211-5803
  11. Stefan Westermann

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    For correspondence
    Stefan.Westermann@uni-due.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6921-9113

Funding

Deutsche Forschungsgemeinschaft (WE-2886/2)

  • Miriam Böhm
  • Stefan Westermann

Deutsche Forschungsgemeinschaft (CRC1093)

  • Elsa Sanchez-Garcia
  • Stefan Westermann

Deutsche Forschungsgemeinschaft (CRC1430)

  • Elsa Sanchez-Garcia
  • Stefan Westermann

H2020 European Research Council (ERC consolidator grant 649124)

  • Mart Loog

Estonian Science Agency (Grant PRG550)

  • Mart Loog

Centre of Excellence for Molecular Cell Technologies (TK143)

  • Mart Loog

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Silke Hauf, Virginia Tech, United States

Version history

  1. Received: February 9, 2021
  2. Preprint posted: February 16, 2021 (view preprint)
  3. Accepted: July 24, 2021
  4. Accepted Manuscript published: July 26, 2021 (version 1)
  5. Version of Record published: August 5, 2021 (version 2)

Copyright

© 2021, Böhm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,134
    views
  • 157
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miriam Böhm
  2. Kerstin Killinger
  3. Alexander Dudziak
  4. Pradeep Pant
  5. Karolin Jänen
  6. Simone Hohoff
  7. Karl Mechtler
  8. Mihkel Örd
  9. Mart Loog
  10. Elsa Sanchez-Garcia
  11. Stefan Westermann
(2021)
Cdc4 phospho-degrons allow differential regulation of Ame1CENP-U protein stability across the cell cycle
eLife 10:e67390.
https://doi.org/10.7554/eLife.67390

Share this article

https://doi.org/10.7554/eLife.67390

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.