Cdc4 phospho-degrons allow differential regulation of Ame1CENP-U protein stability across the cell cycle

  1. Miriam Böhm
  2. Kerstin Killinger
  3. Alexander Dudziak
  4. Pradeep Pant
  5. Karolin Jänen
  6. Simone Hohoff
  7. Karl Mechtler
  8. Mihkel Örd
  9. Mart Loog
  10. Elsa Sanchez-Garcia
  11. Stefan Westermann  Is a corresponding author
  1. University of Duisburg-Essen, Germany
  2. Research Institute of Molecular Pathology, Austria
  3. University of Tartu, Estonia

Abstract

Kinetochores are multi-subunit protein assemblies that link chromosomes to microtubules of the mitotic and meiotic spindle. It is still poorly understood how efficient, centromere-dependent kinetochore assembly is accomplished from hundreds of individual protein building blocks in a cell cycle dependent manner. Here, by combining comprehensive phosphorylation analysis of native Ctf19CCAN subunits with biochemical and functional assays in the model system budding yeast, we demonstrate that Cdk1 phosphorylation activates phospho-degrons on the essential subunit Ame1CENP-U which are recognized by the E3 ubiquitin ligase complex SCF-Cdc4. Gradual phosphorylation of degron motifs culminates in M-Phase and targets the protein for degradation. Binding of the Mtw1Mis12 complex shields the proximal phospho-degron, protecting kinetochore-bound Ame1 from the degradation machinery. Artificially increasing degron strength partially suppresses the temperature-sensitivity of a cdc4 mutant, while overexpression of Ame1-Okp1 is toxic in SCF mutants, demonstrating the physiological importance of this mechanism. We propose that phospho-regulated clearance of excess CCAN subunits facilitates efficient centromere-dependent kinetochore assembly. Our results suggest a novel strategy for how phospho-degrons can be used to regulate the assembly of multi-subunit complexes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Miriam Böhm

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6054-1912
  2. Kerstin Killinger

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Dudziak

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5082-3468
  4. Pradeep Pant

    Computational Biochemistry, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3890-1958
  5. Karolin Jänen

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Simone Hohoff

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Karl Mechtler

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Mihkel Örd

    Institute of Technology, University of Tartu, Tartu, Estonia
    Competing interests
    The authors declare that no competing interests exist.
  9. Mart Loog

    Institute of Technology, University of Tartu, Tartu, Estonia
    Competing interests
    The authors declare that no competing interests exist.
  10. Elsa Sanchez-Garcia

    Computational Biochemisty, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9211-5803
  11. Stefan Westermann

    Molecular Genetics I, University of Duisburg-Essen, Essen, Germany
    For correspondence
    Stefan.Westermann@uni-due.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6921-9113

Funding

Deutsche Forschungsgemeinschaft (WE-2886/2)

  • Miriam Böhm
  • Stefan Westermann

Deutsche Forschungsgemeinschaft (CRC1093)

  • Elsa Sanchez-Garcia
  • Stefan Westermann

Deutsche Forschungsgemeinschaft (CRC1430)

  • Elsa Sanchez-Garcia
  • Stefan Westermann

H2020 European Research Council (ERC consolidator grant 649124)

  • Mart Loog

Estonian Science Agency (Grant PRG550)

  • Mart Loog

Centre of Excellence for Molecular Cell Technologies (TK143)

  • Mart Loog

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Böhm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,219
    views
  • 167
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miriam Böhm
  2. Kerstin Killinger
  3. Alexander Dudziak
  4. Pradeep Pant
  5. Karolin Jänen
  6. Simone Hohoff
  7. Karl Mechtler
  8. Mihkel Örd
  9. Mart Loog
  10. Elsa Sanchez-Garcia
  11. Stefan Westermann
(2021)
Cdc4 phospho-degrons allow differential regulation of Ame1CENP-U protein stability across the cell cycle
eLife 10:e67390.
https://doi.org/10.7554/eLife.67390

Share this article

https://doi.org/10.7554/eLife.67390

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.