The structural connectome constrains fast brain dynamics

  1. Pierpaolo Sorrentino  Is a corresponding author
  2. Caio Seguin
  3. Rosaria Rucco
  4. Marianna Liparoti
  5. Emahnuel Troisi Lopez
  6. Simona Bonavita
  7. Mario Quarantelli MD
  8. Giuseppe Sorrentino
  9. Viktor Jirsa
  10. Andrew Zalesky
  1. Aix-Marseille University, France
  2. University of Melbourne, Australia
  3. University of Naples Parthenope"", Italy
  4. Parthenope University of Naples, Italy
  5. university of Campania Muigi Vanvitelli, Italy
  6. National Research Council, Italy
  7. Aix-Marseille Université, France
  8. The University of Melbourne, Australia

Abstract

Brain activity during rest displays complex, rapidly evolving patterns in space and time. Structural connections comprising the human connectome are hypothesized to impose constraints on the dynamics of this activity. Here, we use magnetoencephalography (MEG) to quantify the extent to which fast neural dynamics in the human brain are constrained by structural connections inferred from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-brain activity at the millisecond scale from source-reconstructed MEG data, estimating the probability that any two brain regions will significantly deviate from baseline activity in consecutive time epochs. We find that the structural connectome relates to, and likely affects, the rapid spreading of neuronal avalanches, evidenced by a significant association between these transition probabilities and structural connectivity strengths (r=0.37, <0.0001). This finding opens new avenues to study the relationship between brain structure and neural dynamics.

Data availability

The MEG data and the reconstructed avalanches are available upon request to the corresponding author (Pierpaolo Sorrentino), conditional on appropriate ethics approval at the local site. The availability of the data was not previously included in the ethical approval, and therefore data cannot be shared directly. In case data are requested, the corresponding author will request an amendment to the local ethical committee. Conditional to approval, the data will be made available. The Matlab code is available at https://github.com/pierpaolosorrentino/Transition-Matrices-

Article and author information

Author details

  1. Pierpaolo Sorrentino

    Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
    For correspondence
    pierpaolo.SORRENTINO@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9556-9800
  2. Caio Seguin

    University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Rosaria Rucco

    Department of Motor Sciences and Wellness, University of Naples Parthenope"", Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0943-131X
  4. Marianna Liparoti

    scienze motorie, Parthenope University of Naples, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2192-6841
  5. Emahnuel Troisi Lopez

    scienze motorie, Parthenope University of Naples, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0220-2672
  6. Simona Bonavita

    Neurology Unit, university of Campania Muigi Vanvitelli, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Mario Quarantelli MD

    Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7836-454X
  8. Giuseppe Sorrentino

    Department of Motor Science and Wellness, University of Naples Parthenope"", Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0800-2433
  9. Viktor Jirsa

    Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8251-8860
  10. Andrew Zalesky

    Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Ethics

Human subjects: All participants gave written informed consent. The study complied with the declaration of Helsinki and was approved by the local Ethics Committee (Prot.n.93C.E./Reg. n.14-17OSS).

Reviewing Editor

  1. Diego Vidaurre

Publication history

  1. Preprint posted: November 25, 2020 (view preprint)
  2. Received: February 9, 2021
  3. Accepted: July 7, 2021
  4. Accepted Manuscript published: July 9, 2021 (version 1)
  5. Accepted Manuscript updated: July 13, 2021 (version 2)
  6. Version of Record published: July 21, 2021 (version 3)

Copyright

© 2021, Sorrentino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,227
    Page views
  • 200
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierpaolo Sorrentino
  2. Caio Seguin
  3. Rosaria Rucco
  4. Marianna Liparoti
  5. Emahnuel Troisi Lopez
  6. Simona Bonavita
  7. Mario Quarantelli MD
  8. Giuseppe Sorrentino
  9. Viktor Jirsa
  10. Andrew Zalesky
(2021)
The structural connectome constrains fast brain dynamics
eLife 10:e67400.
https://doi.org/10.7554/eLife.67400

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Bitya Raphael-Mizrahi et al.
    Research Article

    The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 (CB1) and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as Osteogenic Growth Peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts. We show that the OGP effects on osteoblast proliferation, osteoclastogenesis, and macrophage inflammation in vitro, as well as rescue of ovariectomy-induced bone loss and prevention of ear edema in vivo are all abrogated by genetic or pharmacological ablation of CB2. We also demonstrate that OGP binds at CB2 and may act as both an agonist and positive allosteric modulator in the presence of other lipophilic agonists. In premenopausal women, OGP circulating levels significantly decline with age. In adult mice, exogenous administration of OGP completely prevented age-related bone loss. Our findings suggest that OGP attenuates age-related bone loss by maintaining a skeletal CB2 tone. Importantly, they also indicate the occurrence of an endogenous peptide that signals via CB2 receptor in health and disease.

    1. Cancer Biology
    2. Computational and Systems Biology
    Iurii Petrov, Andrey Alexeyenko
    Research Article

    Late advances in genome sequencing expanded the space of known cancer driver genes several-fold. However, most of this surge was based on computational analysis of somatic mutation frequencies and/or their impact on the protein function. On the contrary, experimental research necessarily accounted for functional context of mutations interacting with other genes and conferring cancer phenotypes. Eventually, just such results become 'hard currency' of cancer biology. The new method, NEAdriver employs knowledge accumulated thus far in the form of global interaction network and functionally annotated pathways in order to recover known and predict novel driver genes. The driver discovery was individualized by accounting for mutations' co-occurrence in each tumour genome - as an alternative to summarizing information over the whole cancer patient cohorts. For each somatic genome change, probabilistic estimates from two lanes of network analysis were combined into joint likelihoods of being a driver. Thus, ability to detect previously unnoticed candidate driver events emerged from combining individual genomic context with network perspective. The procedure was applied to ten largest cancer cohorts followed by evaluating error rates against previous cancer gene sets. The discovered driver combinations were shown to be informative on cancer outcome. This revealed driver genes with individually sparse mutation patterns that would not be detectable by other computational methods and related to cancer biology domains poorly covered by previous analyses. In particular, recurrent mutations of collagen, laminin, and integrin genes were observed in the adenocarcinoma and glioblastoma cancers. Considering constellation patterns of candidate drivers in individual cancer genomes opens a novel avenue for personalized cancer medicine.