The structural connectome constrains fast brain dynamics

  1. Pierpaolo Sorrentino  Is a corresponding author
  2. Caio Seguin
  3. Rosaria Rucco
  4. Marianna Liparoti
  5. Emahnuel Troisi Lopez
  6. Simona Bonavita
  7. Mario Quarantelli MD
  8. Giuseppe Sorrentino
  9. Viktor Jirsa
  10. Andrew Zalesky
  1. Aix-Marseille University, France
  2. University of Melbourne, Australia
  3. University of Naples 'Parthenope', Italy
  4. Parthenope University of Naples, Italy
  5. University of Campania Luigi Vanvitelli, Italy
  6. National Research Council, Italy
  7. Aix-Marseille Université, France
  8. The University of Melbourne, Australia

Abstract

Brain activity during rest displays complex, rapidly evolving patterns in space and time. Structural connections comprising the human connectome are hypothesized to impose constraints on the dynamics of this activity. Here, we use magnetoencephalography (MEG) to quantify the extent to which fast neural dynamics in the human brain are constrained by structural connections inferred from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-brain activity at the millisecond scale from source-reconstructed MEG data, estimating the probability that any two brain regions will significantly deviate from baseline activity in consecutive time epochs. We find that the structural connectome relates to, and likely affects, the rapid spreading of neuronal avalanches, evidenced by a significant association between these transition probabilities and structural connectivity strengths (r=0.37, <0.0001). This finding opens new avenues to study the relationship between brain structure and neural dynamics.

Data availability

The MEG data and the reconstructed avalanches are available upon request to the corresponding author (Pierpaolo Sorrentino), conditional on appropriate ethics approval at the local site. The availability of the data was not previously included in the ethical approval, and therefore data cannot be shared directly. In case data are requested, the corresponding author will request an amendment to the local ethical committee. Conditional to approval, the data will be made available. The Matlab code is available at https://github.com/pierpaolosorrentino/Transition-Matrices-

Article and author information

Author details

  1. Pierpaolo Sorrentino

    Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
    For correspondence
    pierpaolo.SORRENTINO@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9556-9800
  2. Caio Seguin

    University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Rosaria Rucco

    Department of Motor Sciences and Wellness, University of Naples 'Parthenope', Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0943-131X
  4. Marianna Liparoti

    scienze motorie, Parthenope University of Naples, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2192-6841
  5. Emahnuel Troisi Lopez

    scienze motorie, Parthenope University of Naples, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0220-2672
  6. Simona Bonavita

    Neurology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Mario Quarantelli MD

    Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7836-454X
  8. Giuseppe Sorrentino

    Department of Motor Science and Wellness, University of Naples 'Parthenope', Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0800-2433
  9. Viktor Jirsa

    Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8251-8860
  10. Andrew Zalesky

    Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Reviewing Editor

  1. Diego Vidaurre

Ethics

Human subjects: All participants gave written informed consent. The study complied with the declaration of Helsinki and was approved by the local Ethics Committee (Prot.n.93C.E./Reg. n.14-17OSS).

Version history

  1. Preprint posted: November 25, 2020 (view preprint)
  2. Received: February 9, 2021
  3. Accepted: July 7, 2021
  4. Accepted Manuscript published: July 9, 2021 (version 1)
  5. Accepted Manuscript updated: July 13, 2021 (version 2)
  6. Version of Record published: July 21, 2021 (version 3)

Copyright

© 2021, Sorrentino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,992
    views
  • 291
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierpaolo Sorrentino
  2. Caio Seguin
  3. Rosaria Rucco
  4. Marianna Liparoti
  5. Emahnuel Troisi Lopez
  6. Simona Bonavita
  7. Mario Quarantelli MD
  8. Giuseppe Sorrentino
  9. Viktor Jirsa
  10. Andrew Zalesky
(2021)
The structural connectome constrains fast brain dynamics
eLife 10:e67400.
https://doi.org/10.7554/eLife.67400

Share this article

https://doi.org/10.7554/eLife.67400

Further reading

    1. Computational and Systems Biology
    David Geller-McGrath, Kishori M Konwar ... Jason E McDermott
    Tools and Resources

    The reconstruction of complete microbial metabolic pathways using ‘omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.