rβ2-subunit alternative splicing stabilizes Cav2.3 Ca2+ channel activity during continuous midbrain dopamine neuron-like activity

Abstract

In dopaminergic (DA) substantia nigra (SN) neurons Cav2.3 R-type Ca2+-currents contribute to somatodendritic Ca2+-oscillations. This activity may contribute to the selective degeneration of these neurons in Parkinson's disease (PD) since Cav2.3-knockout is neuroprotective in a PD mouse model. Here we show that in tsA-201-cells the membrane-anchored β2-splice variants β2a and β2e are required to stabilize Cav2.3 gating properties allowing sustained Cav2.3 availability during simulated pacemaking and enhanced Ca2+-currents during bursts. We confirmed the expression of β2a- and β2e-subunit transcripts in the mouse SN and in identified SN DA neurons. Patch-clamp recordings of mouse DA midbrain neurons in culture and SN DA neurons in brain slices revealed SNX-482-sensitive R-type Ca2+-currents with voltage-dependent gating properties that suggest modulation by β2a- and/or β2e-subunits. Thus, β-subunit alternative splicing may prevent a fraction of Cav2.3 channels from inactivation in continuously active, highly vulnerable SN DA neurons, thereby also supporting Ca2+ signals contributing to the (patho)physiological role of Cav2.3 channels in PD.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Raw data have been provided for mean population data shown in Figures and Tables.

The following previously published data sets were used

Article and author information

Author details

  1. Anita Siller

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Nadja T Hofer

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Giulia Tomagra

    Department of Drug Science, University of Torino, Torino, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole Wiederspohn

    Institute of Applied Physiology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Simon Hess

    Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Julia Benkert

    Institute of Applied Physiology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Aisylu Gaifullina

    Institute of Applied Physiology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Desiree Spaich

    Institute of Applied Physiology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Johanna Duda

    Institute of Applied Physiology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Christina Poetschke

    Institute of Applied Physiology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Kristina Vilusic

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Eva Maria Fritz

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  13. Toni Schneider

    Institute of Neurophysiology, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Peter Kloppenburg

    Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4554-404X
  15. Birgit Liss

    Institute of Applied Physiology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Valentina Carabelli

    Department of Drug Science, University of Torino, Torino, Italy
    Competing interests
    The authors declare that no competing interests exist.
  17. Emilio Carbone

    Department of Drug Science, University of Torino, Torino, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2239-6280
  18. Nadine Jasmin Ortner

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    For correspondence
    nadine.ortner@uibk.ac.at
    Competing interests
    The authors declare that no competing interests exist.
  19. Jörg Striessnig

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    For correspondence
    joerg.striessnig@uibk.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9406-7120

Funding

Austrian Science Fund (P27809,P35722,CavX-DOC 30 doc.fund)

  • Jörg Striessnig

Tyrolean Science Fund (UNI-0404/2345)

  • Nadine Jasmin Ortner

Italian Miur (2015FNWP34)

  • Emilio Carbone

Compagnia di San Paolo (CSTO165284)

  • Emilio Carbone

Austrian Science Fund (P35087)

  • Nadine Jasmin Ortner

Hamburg Institute for Advanced Study (Research Fellowship)

  • Birgit Liss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments and procedures were performed in strict accordance with the European Community's Council Directive 2010/63/UE and approved by the Italian Ministry of Health and the Local Organism responsible for animal welfare at the University of Torino (authorization DGSAF 0011710-P-26/07/2017) and the local authorities at the University of Ulm (Regierungspräsidium Tübingen, Ref: 35/9185.81-3; Reg. Nr. o.147) and University of Cologne (LANUV NRW, Recklinghausen, Germany (84-02.05.20.12.254).

Copyright

© 2022, Siller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,309
    views
  • 350
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.67464

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.