Kinesin-6 Klp9 orchestrates spindle elongation by regulating microtubule sliding and growth

  1. Lara Katharina Krüger  Is a corresponding author
  2. Matthieu Gélin
  3. Liang Ji
  4. Carlos Kikuti
  5. Anne Houdusse
  6. Manuel Théry
  7. Laurent Blanchoin
  8. Phong T Tran  Is a corresponding author
  1. Institut Curie, France
  2. Institut de Recherche Saint Louis, France
  3. Institut Curie, Centre National de la Recherche Scientifique, France
  4. CEA - Hopital Saint Louis, France
  5. Interdisciplinary Research Institute Grenoble, France

Abstract

Mitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in S. pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, creating a link between the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.

Data availability

A source data file for all data sets used in Figure 1- 7 has been provided.

Article and author information

Author details

  1. Lara Katharina Krüger

    UMR144, Institut Curie, Paris, France
    For correspondence
    lara-katharina.kruger@curie.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0439-951X
  2. Matthieu Gélin

    Human Immunology Pathophysiology Immunotherapy, Institut de Recherche Saint Louis, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Liang Ji

    UMR144, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Carlos Kikuti

    UMR144, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Houdusse

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8566-0336
  6. Manuel Théry

    CEA - Hopital Saint Louis, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Laurent Blanchoin

    Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8146-9254
  8. Phong T Tran

    UMR144, Institut Curie, Paris, France
    For correspondence
    phong.tran@curie.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2410-2277

Funding

French Ministry of Science and Education

  • Lara Katharina Krüger

Fondation ARC pour la Recherche sur le Cancer

  • Lara Katharina Krüger

La Ligue Contre le Cancer

  • Phong T Tran

Fondation ARC pour la Recherche sur le Cancer

  • Phong T Tran

INCa

  • Phong T Tran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas Surrey, Centre for Genomic Regulation (CRG), Spain

Version history

  1. Received: February 12, 2021
  2. Accepted: June 2, 2021
  3. Accepted Manuscript published: June 3, 2021 (version 1)
  4. Version of Record published: June 15, 2021 (version 2)

Copyright

© 2021, Krüger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,409
    views
  • 233
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lara Katharina Krüger
  2. Matthieu Gélin
  3. Liang Ji
  4. Carlos Kikuti
  5. Anne Houdusse
  6. Manuel Théry
  7. Laurent Blanchoin
  8. Phong T Tran
(2021)
Kinesin-6 Klp9 orchestrates spindle elongation by regulating microtubule sliding and growth
eLife 10:e67489.
https://doi.org/10.7554/eLife.67489

Share this article

https://doi.org/10.7554/eLife.67489

Further reading

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.