Two different cell-cycle processes determine the timing of cell division in Escherichia coli

  1. Alexandra Colin
  2. Gabriele Micali
  3. Louis Faure
  4. Marco Cosentino Lagomarsino  Is a corresponding author
  5. Sven van Teeffelen  Is a corresponding author
  1. Institut Pasteur, France
  2. ETH Zürich, Switzerland
  3. Medical University of Vienna, Austria
  4. IFOM Foundation and University of Milan, Italy
  5. Université de Montréal, Canada

Abstract

Cells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli, it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting.

Data availability

All data generated or analysed during this study are included in supplemental datasets provided for each figure. Average quantities and sample sizes for each biological replicate can be found in Supplementary file 1. Supplementary file 2 contains all single-cell data used in this study.

Article and author information

Author details

  1. Alexandra Colin

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9144-3282
  2. Gabriele Micali

    Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Louis Faure

    Department of Neuro-Immunology, Medical University of Vienna, Wien, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4621-586X
  4. Marco Cosentino Lagomarsino

    Quantitative Biology and Physics, IFOM Foundation and University of Milan, Milan, Italy
    For correspondence
    marco.cosentino-lagomarsino@ifom.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0235-0445
  5. Sven van Teeffelen

    Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
    For correspondence
    sven.vanteeffelen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0877-1294

Funding

H2020 European Research Council (679980)

  • Sven van Teeffelen

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • Sven van Teeffelen

Mairie de Paris Emergence program

  • Sven van Teeffelen

Volkswagen Foundation Life program

  • Sven van Teeffelen

Italian Association for Cancer Research AIRC-IG (23258)

  • Marco Cosentino Lagomarsino

National Science Foundationce Foundation (310030_188642)

  • Gabriele Micali

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Colin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,467
    views
  • 416
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandra Colin
  2. Gabriele Micali
  3. Louis Faure
  4. Marco Cosentino Lagomarsino
  5. Sven van Teeffelen
(2021)
Two different cell-cycle processes determine the timing of cell division in Escherichia coli
eLife 10:e67495.
https://doi.org/10.7554/eLife.67495

Share this article

https://doi.org/10.7554/eLife.67495

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.