The cooperative binding of TDP-43 to GU-rich RNA repeats antagonizes TDP-43 aggregation

  1. Juan Carlos Rengifo-Gonzalez
  2. Krystel El Hage
  3. Marie-Jeanne Clément
  4. Emilie Steiner
  5. Vandana Joshi
  6. Pierrick Craveur
  7. Dominique Durand
  8. David Pastré  Is a corresponding author
  9. Ahmed Bouhss  Is a corresponding author
  1. Université Evry-val-d'Essonne, France
  2. Genopole, France
  3. université Evry, France
  4. INSERM, France
  5. Synsight company, France
  6. Institut de Biologie Intégrative de la Cellule, France
  7. CNRS, France

Abstract

TDP-43 is a nuclear RNA-binding protein that forms neuronal cytoplasmic inclusions in two major neurodegenerative diseases, ALS and FTLD. While the self-assembly of TDP-43 by its structured N-terminal and intrinsically disordered C-terminal domains has been widely studied, the mechanism by which mRNA preserves TDP-43 solubility in the nucleus has not been addressed. Here, we demonstrate that tandem RNA Recognition Motifs of TDP-43 bind to long GU-repeats in a cooperative manner through intermolecular interactions. Moreover, using mutants whose cooperativity is impaired, we found that the cooperative binding of TDP-43 to mRNA may be critical to maintain the solubility of TDP-43 in the nucleus and the miscibility of TDP-43 in cytoplasmic stress granules. We anticipate that the knowledge of a higher order assembly of TDP-43 on mRNA may clarify its role in intron processing and provide a means of interfering with the cytoplasmic aggregation of TDP-43.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Juan Carlos Rengifo-Gonzalez

    SABNP, Université Evry-val-d'Essonne, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Krystel El Hage

    SABNP, Genopole, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie-Jeanne Clément

    SABNP, Université Evry-val-d'Essonne, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Emilie Steiner

    laboratoire structure activité des biomolécules normales et pathologiques, université Evry, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Vandana Joshi

    laboratoire structure activité des biomolécules normales et pathologiques, INSERM, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Pierrick Craveur

    SABNP, Synsight company, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Dominique Durand

    UMR 9198, Institut de Biologie Intégrative de la Cellule, ORSAY, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9414-5857
  8. David Pastré

    SABNP, Université Evry-val-d'Essonne, Evry, France
    For correspondence
    david.pastre@univ-evry.fr
    Competing interests
    The authors declare that no competing interests exist.
  9. Ahmed Bouhss

    91, CNRS, Evry, France
    For correspondence
    ahmed.bouhss@univ-evry.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6492-1429

Funding

Genopole (SATURNE 2018-SABNP)

  • Ahmed Bouhss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rohit V Pappu, Washington University in St Louis, United States

Version history

  1. Received: February 16, 2021
  2. Accepted: September 3, 2021
  3. Accepted Manuscript published: September 7, 2021 (version 1)
  4. Accepted Manuscript updated: September 10, 2021 (version 2)
  5. Version of Record published: October 18, 2021 (version 3)

Copyright

© 2021, Rengifo-Gonzalez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,818
    Page views
  • 681
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Carlos Rengifo-Gonzalez
  2. Krystel El Hage
  3. Marie-Jeanne Clément
  4. Emilie Steiner
  5. Vandana Joshi
  6. Pierrick Craveur
  7. Dominique Durand
  8. David Pastré
  9. Ahmed Bouhss
(2021)
The cooperative binding of TDP-43 to GU-rich RNA repeats antagonizes TDP-43 aggregation
eLife 10:e67605.
https://doi.org/10.7554/eLife.67605

Share this article

https://doi.org/10.7554/eLife.67605

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristian Davidsen, Jonathan S Marvin ... Lucas B Sullivan
    Research Article

    Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.

    1. Biochemistry and Chemical Biology
    Chi-Ning Chuang, Hou-Cheng Liu ... Ting-Fang Wang
    Research Article

    Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.