1. Neuroscience
Download icon

Dorsal raphe nucleus to anterior cingulate cortex 5-HTergic neural circuit modulates consolation and sociability

Research Article
  • Cited 0
  • Views 336
  • Annotations
Cite this article as: eLife 2021;10:e67638 doi: 10.7554/eLife.67638

Abstract

Consolation is a common response to the distress of others in humans and some social animals, but the neural mechanisms underlying this behavior are not well characterized. By using socially monogamous mandarin voles, we found that optogenetic or chemogenetic inhibition of 5-HTergic neurons in the dorsal raphe nucleus (DR) or optogenetic inhibition of 5-HT terminals in the anterior cingulate cortex (ACC) significantly decreased allogrooming time in the consolation test and reduced sociability in the three-chamber test. The release of 5-HT within the ACC and the activity of DR neurons were significantly increased during allogrooming, sniffing and social approaching. Finally, we found that the activation of 5-HT1A receptors in the ACC was sufficient to reverse consolation and sociability deficits induced by the chemogenetic inhibition of 5-HTergic neurons in the DR. Our study provided first direct evidence that DR-ACC 5-HTergic neural circuit is implicated in consolation-like behaviors and sociability.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. We had also deposited the datasets of this manuscript into the Dyrad.

The following data sets were generated

Article and author information

Author details

  1. Laifu Li

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Li-Zi Zhang

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhi-Xiong He

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Huan Ma

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yu-Ting Zhang

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yu-Feng Xun

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wei Yuan

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Wen-Juan Hou

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi-Tong Li

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zi-Jian Lv

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Rui Jia

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Fa-Dao Tai

    College of Life Sciences, Shaanxi Normal University, Xi'an, China
    For correspondence
    taifadao@snnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6804-4179

Funding

National Natural Science Foundation of China (31970424,31670421,31372213 and 31772473)

  • Fa-Dao Tai

Natural Science Basic Research Program of Shaanxi Province (2018JM3032)

  • Fa-Dao Tai

Fundamental Research Funds for the Central Universities (GK201903059)

  • Fa-Dao Tai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the breeding, housing, and experimental procedures in this study were in accordance with Chinese guidelines for the care and use of laboratory animals and were approved by the Animal Care and Use Committee of Shaanxi Normal University (SNNU_20190501001). All efforts were made to minimize suffering and the number of animals used during the studies.

Reviewing Editor

  1. Peggy Mason, University of Chicago, United States

Publication history

  1. Received: February 17, 2021
  2. Accepted: June 2, 2021
  3. Accepted Manuscript published: June 3, 2021 (version 1)

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 336
    Page views
  • 84
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Xiaoxuan Jia et al.
    Research Article

    Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.

    1. Neuroscience
    Nick Taubert et al.
    Research Article

    Dynamic facial expressions are crucial for communication in primates. Due to the difficulty to control shape and dynamics of facial expressions across species, it is unknown how species-specific facial expressions are perceptually encoded and interact with the representation of facial shape. While popular neural network models predict a joint encoding of facial shape and dynamics, the neuromuscular control of faces evolved more slowly than facial shape, suggesting a separate encoding. To investigate these alternative hypotheses, we developed photo-realistic human and monkey heads that were animated with motion capture data from monkeys and humans. Exact control of expression dynamics was accomplished by a Bayesian machine-learning technique. Consistent with our hypothesis, we found that human observers learned cross-species expressions very quickly, where face dynamics was represented largely independently of facial shape. This result supports the co-evolution of the visual processing and motor control of facial expressions, while it challenges appearance-based neural network theories of dynamic expression recognition.