Finger somatotopy is preserved after tetraplegia but deteriorates over time

  1. Sanne Kikkert  Is a corresponding author
  2. Dario Pfyffer
  3. Michaela Verling
  4. Patrick Freund
  5. Nicole Wenderoth
  1. ETH Zürich, Switzerland
  2. University of Zürich, Switzerland

Abstract

Previous studies showed reorganised and/or altered activity in the primary sensorimotor cortex after a spinal cord injury (SCI), suggested to reflect abnormal processing. However, little is known about whether somatotopically-specific representations can be activated despite reduced or absent afferent hand inputs. In this observational study we used functional MRI and an (attempted) finger movement task in tetraplegic patients to characterise the somatotopic hand layout in primary somatosensory cortex. We further used structural MRI to assess spared spinal tissue bridges. We found that somatotopic hand representations can be activated through attempted finger movements in absence of sensory and motor hand functioning, and no spared spinal tissue bridges. Such preserved hand somatotopy could be exploited by rehabilitation approaches that aim to establish new hand-brain functional connections after SCI (e.g., neuroprosthetics). However, over years since SCI the hand representation somatotopy deteriorated, suggesting that somatotopic hand representations are more easily targeted within the first years after SCI.

Data availability

Full details of the experimental protocol are available on clinicaltrials.gov under the number NCT03772548. Data is shared on https://osf.io/e8u95/.

Article and author information

Author details

  1. Sanne Kikkert

    Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
    For correspondence
    sanne.kikkert@hest.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9952-4864
  2. Dario Pfyffer

    Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2406-9251
  3. Michaela Verling

    Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick Freund

    Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4851-2246
  5. Nicole Wenderoth

    Neural Control of Movement Lab, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3246-9386

Funding

Swiss National Science Foundation (SNF 320030_175616)

  • Nicole Wenderoth

ETH Zurich Postdoctoral Fellowship Program

  • Sanne Kikkert

Swiss National Science Foundation (PCEFP3_181362 / 1)

  • Patrick Freund

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. J Andrew Pruszynski, Western University, Canada

Ethics

Human subjects: Participants' informed consent was obtained according to the Declaration of Helsinki prior to study onset. Ethical approval was granted by the Kantonale Ethikkommission Zürich (EK-2018-00937).

Version history

  1. Preprint posted: February 9, 2021 (view preprint)
  2. Received: February 19, 2021
  3. Accepted: October 18, 2021
  4. Accepted Manuscript published: October 19, 2021 (version 1)
  5. Version of Record published: November 8, 2021 (version 2)

Copyright

© 2021, Kikkert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 850
    views
  • 97
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sanne Kikkert
  2. Dario Pfyffer
  3. Michaela Verling
  4. Patrick Freund
  5. Nicole Wenderoth
(2021)
Finger somatotopy is preserved after tetraplegia but deteriorates over time
eLife 10:e67713.
https://doi.org/10.7554/eLife.67713

Share this article

https://doi.org/10.7554/eLife.67713

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.