De-novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition

  1. Erich Stefan
  2. Richard Obexer
  3. Susanne Hofmann
  4. Khanh Vu Huu
  5. Yichao Huang
  6. Nina Morgner
  7. Hiroaki Suga  Is a corresponding author
  8. Robert Tampé  Is a corresponding author
  1. Goethe University Frankfurt, Germany
  2. The University of Tokyo, Japan

Abstract

ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters involved in a multitude of physiological processes and human diseases. Despite considerable efforts, it remains unclear how ABC transporters harness the chemical energy of ATP to drive substrate transport across cell membranes. Here, by random nonstandard peptide integrated discovery (RaPID), we leveraged combinatorial macrocyclic peptides that target a heterodimeric ABC transport complex and explore fundamental principles of the substrate translocation cycle. High-affinity peptidic macrocycles bind conformationally selective and display potent multimode inhibitory effects. The macrocycles block the transporter either before or after unidirectional substrate export along a single conformational switch induced by ATP binding. Our study reveals mechanistic principles of ATP binding, conformational switching, and energy transduction for substrate transport of ABC export systems. We highlight the potential of de novo macrocycles as effective inhibitors for membrane proteins implicated in multidrug resistance, providing avenues for the next-generation of pharmaceuticals.

Data availability

All data denerated or analyzed during this study are included in the manuscript and support files. A source data file has been provided for Figure 1C (Sequencing Data), Figure 2-6, Figure 2-supplement figure 1,and Figure 5-supplement figure 1.

Article and author information

Author details

  1. Erich Stefan

    Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Richard Obexer

    Department of Chemistry, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Susanne Hofmann

    Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Khanh Vu Huu

    3Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Yichao Huang

    Department of Chemistry, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Nina Morgner

    Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1872-490X
  7. Hiroaki Suga

    Department of Chemistry, The University of Tokyo, Tokyo, Japan
    For correspondence
    hsuga@chem.su-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert Tampé

    Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
    For correspondence
    tampe@em.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0403-2160

Funding

Deutsche Forschungsgemeinschaft (TA 157/12-1)

  • Robert Tampé

Deutsche Forschungsgemeinschaft (CRC 807/P16)

  • Robert Tampé

Deutsche Forschungsgemeinschaft (CRC 807/24)

  • Nina Morgner

European Research Council (798121)

  • Robert Tampé

JSPS Grants-in-Aid for Research Fellowship (P15333)

  • Richard Obexer

Japan Society for the Promotion of Science (JP20H05618)

  • Hiroaki Suga

Japan Society for the Promotion of Science (JP20am0101090)

  • Hiroaki Suga

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Stefan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,261
    views
  • 328
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erich Stefan
  2. Richard Obexer
  3. Susanne Hofmann
  4. Khanh Vu Huu
  5. Yichao Huang
  6. Nina Morgner
  7. Hiroaki Suga
  8. Robert Tampé
(2021)
De-novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition
eLife 10:e67732.
https://doi.org/10.7554/eLife.67732

Share this article

https://doi.org/10.7554/eLife.67732

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.