Dopamine enhances model-free credit assignment through boosting of retrospective model-based inference
Abstract
Dopamine is implicated in representing model-free (MF) reward prediction errors a as well as influencing model-based (MB) credit assignment and choice. Putative cooperative interactions between MB and MF systems include a guidance of MF credit assignment by MB inference. Here, we used a double-blind, placebo-controlled, within-subjects design to test an hypothesis that enhancing dopamine levels boosts the guidance of MF credit assignment by MB inference. In line with this, we found that levodopa enhanced guidance of MF credit assignment by MB inference, without impacting MF and MB influences directly. This drug effect correlated negatively with a dopamine-dependent change in purely MB credit assignment, possibly reflecting a trade-off between these two MB components of behavioural control. Our findings of a dopamine boost in MB inference guidance of MF learning highlights a novel DA influence on MB-MF cooperative interactions.
Data availability
Necessary source data files are openly available at: https://osf.io/4dfkv/.
Article and author information
Author details
Funding
Wellcome Trust (098362/Z/12/Z)
- Raymond J Dolan
Max-Planck-Gesellschaft (Open-access funding)
- Lorenz Deserno
- Rani Moran
- Peter Dayan
- Raymond J Dolan
Deutsche Forschungsgemeinschaft (402170461)
- Lorenz Deserno
- Raymond J Dolan
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The study was approved by the University College London Research Ethics Committee (Project ID 11285/001). Subjects gave written informed consent before the experiment.
Reviewing Editor
- Thorsten Kahnt, Northwestern University, United States
Publication history
- Preprint posted: January 17, 2021 (view preprint)
- Received: February 22, 2021
- Accepted: December 8, 2021
- Accepted Manuscript published: December 9, 2021 (version 1)
- Accepted Manuscript updated: December 20, 2021 (version 2)
- Version of Record published: January 13, 2022 (version 3)
Copyright
© 2021, Deserno et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,153
- Page views
-
- 216
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Sensory neurons previously shown to optimize speed and balance in fish by providing information about the curvature of the spine show similar morphology and connectivity in mice.
-
- Neuroscience
Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral and spatiotemporal characteristics, indicating distinct functional roles.