Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells

  1. Wai Hoe Ng
  2. Elizabeth K Johnston
  3. Jun Jie Tan
  4. Jacqueline M Bliley
  5. Adam W Feinberg
  6. Donna B Stolz
  7. Ming Sun
  8. Piyumi Wijesekara
  9. Finn Hawkins
  10. Darrell N Kotton
  11. Xi Ren  Is a corresponding author
  1. Carnegie Mellon University, United States
  2. Universiti Sains Malaysia, Malaysia
  3. University of Pittsburgh, United States
  4. Boston University, United States

Abstract

The extensive crosstalk between the developing heart and lung is critical to their proper morphogenesis and maturation. However, there remains a lack of models that investigate the critical cardio-pulmonary mutual interaction during human embryogenesis. Here, we reported a novel stepwise strategy for directing the simultaneous induction of both mesoderm-derived cardiac and endoderm-derived lung epithelial lineages within a single differentiation of human induced pluripotent stem cells (hiPSCs) via temporal specific tuning of WNT and nodal signaling in the absence of exogenous growth factors. Using 3D suspension culture, we established concentric cardio-pulmonary micro-Tissues (mTs), and expedited alveolar maturation in the presence of cardiac accompaniment. Upon withdrawal of WNT agonist, the cardiac and pulmonary components within each dual-lineage mT effectively segregated from each other with concurrent initiation of cardiac contraction. We expect that our multilineage differentiation model will offer an experimentally tractable system for investigating human cardio-pulmonary interaction and tissue boundary formation during embryogenesis.

Data availability

All data supporting the findings of this study are available within the article and its supplementary files. Source data files have been provided for Figures 1 to 6.

Article and author information

Author details

  1. Wai Hoe Ng

    Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    Wai Hoe Ng, is a co-inventor of a related provisional patent application (No. 63/124422) entitled 'Methods for simultaneous cardio-pulmonary differentiation and alveolar maturation from human pluripotent stem cells'..
  2. Elizabeth K Johnston

    Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    Elizabeth K Johnston, is a co-inventor of a related provisional patent application (No. 63/124422) entitled 'Methods for simultaneous cardio-pulmonary differentiation and alveolar maturation from human pluripotent stem cells'..
  3. Jun Jie Tan

    Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
    Competing interests
    No competing interests declared.
  4. Jacqueline M Bliley

    Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  5. Adam W Feinberg

    Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  6. Donna B Stolz

    Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  7. Ming Sun

    Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  8. Piyumi Wijesekara

    Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  9. Finn Hawkins

    Center for Regenerative Medicine, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  10. Darrell N Kotton

    Center for Regenerative Medicine, Boston University, Boston, MA, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9604-8476
  11. Xi Ren

    Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    xiren@cmu.edu
    Competing interests
    Xi Ren, is a co-inventor of a related provisional patent application (No. 63/124422) entitled 'Methods for simultaneous cardio-pulmonary differentiation and alveolar maturation from human pluripotent stem cells'..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3187-1311

Funding

Samuel & Emma Winters Foundation (A025662)

  • Xi Ren

Carnegie Mellon University

  • Xi Ren

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Ng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,823
    views
  • 462
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wai Hoe Ng
  2. Elizabeth K Johnston
  3. Jun Jie Tan
  4. Jacqueline M Bliley
  5. Adam W Feinberg
  6. Donna B Stolz
  7. Ming Sun
  8. Piyumi Wijesekara
  9. Finn Hawkins
  10. Darrell N Kotton
  11. Xi Ren
(2022)
Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells
eLife 11:e67872.
https://doi.org/10.7554/eLife.67872

Share this article

https://doi.org/10.7554/eLife.67872

Further reading

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.