A functional genetic toolbox for human tissue-derived organoids

  1. Dawei Sun
  2. Lewis Evans
  3. Francesca Perrone
  4. Vanesa Sokleva
  5. Kyungtae Lim
  6. Saba Rezakhani
  7. Matthias Lutolf
  8. Matthias Zilbauer
  9. Emma L Rawlins  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University College London, United Kingdom
  3. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

Human organoid systems recapitulate key features of organs offering platforms for modelling developmental biology and disease. Tissue-derived organoids have been widely used to study the impact of extrinsic niche factors on stem cells. However, they are rarely used to study endogenous gene function due to the lack of efficient gene manipulation tools. Previously, we established a human foetal lung organoid system (Nikolić et al., 2017). Here, using this organoid system as an example we have systematically developed and optimised a complete genetic toolbox for use in tissue-derived organoids. This includes 'Organoid Easytag' our efficient workflow for targeting all types of gene loci through CRISPR-mediated homologous recombination followed by flow cytometry for enriching correctly-targeted cells. Our toolbox also incorporates conditional gene knock-down or overexpression using tightly-inducible CRISPR interference and CRISPR activation which is the first efficient application of these techniques to tissue-derived organoids. These tools will facilitate gene perturbation studies in tissue-derived organoids facilitating human disease modelling and providing a functional counterpart to many on-going descriptive studies, such as the Human Cell Atlas Project.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dawei Sun

    Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Lewis Evans

    Developmental Biology and Cancer Development, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7279-7651
  3. Francesca Perrone

    Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Vanesa Sokleva

    Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyungtae Lim

    Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Saba Rezakhani

    École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthias Lutolf

    École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthias Zilbauer

    Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Emma L Rawlins

    Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    elr21@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7426-3792

Funding

Medical Research Council (MR/P009581/1)

  • Emma L Rawlins

Wellcome Trust PhD Studentship (109146/Z/15/Z)

  • Dawei Sun

Alzheimers Research UK Stem Cell Research Centre

  • Lewis Evans

National Research Foundation of Korea (2018R1A6A3A03012122)

  • Kyungtae Lim

Wellcome Trust Core Support for Gurdon Institute (203144/Z/16/Z)

  • Emma L Rawlins

Cancer Research UK Core Support for Gurdon Institute (C6946/A24843)

  • Emma L Rawlins

Medical Research Council New Investigator Research Grant (MR/T001917/1)

  • Matthias Zilbauer

Wellcome Trust PhD studentship (102175/B/13/Z)

  • Vanesa Sokleva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,541
    views
  • 1,387
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dawei Sun
  2. Lewis Evans
  3. Francesca Perrone
  4. Vanesa Sokleva
  5. Kyungtae Lim
  6. Saba Rezakhani
  7. Matthias Lutolf
  8. Matthias Zilbauer
  9. Emma L Rawlins
(2021)
A functional genetic toolbox for human tissue-derived organoids
eLife 10:e67886.
https://doi.org/10.7554/eLife.67886

Share this article

https://doi.org/10.7554/eLife.67886

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.