Nuclear Hormone Receptor NHR-49 acts in parallel with HIF-1 to promote hypoxia adaptation in Caenorhabditis elegans
Abstract
Caenorhabditis elegans Nuclear Hormone Receptor NHR-49, an orthologue of mammalian Peroxisome Proliferator-Activated Receptor alpha (PPARα). We show that nhr-49 is required for animal survival in hypoxia and is synthetic lethal with hif-1 in this context, demonstrating that these factors act in parallel. RNA-seq analysis shows that in hypoxia nhr-49 regulates a set of genes that are hif-1-independent, including autophagy genes that promote hypoxia survival. We further show that Nuclear Hormone Receptor nhr-67 is a negative regulator and Homeodomain-interacting Protein Kinase hpk-1 is a positive regulator of the NHR-49 pathway. Together, our experiments define a new, essential hypoxia response pathway that acts in parallel with the well-known HIF-mediated hypoxia response.
Data availability
RNA-seq data have been deposited at NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under the record GSE166788.All data generated or analysed during this study are included in the manuscript and Supplementary Tables. Raw data points from each N are shown in figures where-ever possible. See transparent reporting form for details.
-
NHR-49 controls a HIF-1 independent hypoxia adaptation pathway in Caenorhabditis elegansNCBI Gene Expression Omnibus GSE166788.
-
Hypoxia responseGene expression omnibus GSE2836.
Article and author information
Author details
Funding
National Institutes of Health (R56AG066682)
- Arjumand Ghazi
BC Children's Hospital Foundation
- Stefan Taubert
Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-05133)
- Stefan Taubert
National Institutes of Health (R01AG051659)
- Arjumand Ghazi
Cancer Research Society (22727)
- Stefan Taubert
BC Children's Hospital Foundation
- Kelsie RS Doering
Canada Research Chairs
- Stefan Taubert
National Institutes of Health (R01AG044378)
- Dana L Miller
Natural Sciences and Engineering Research Council of Canada
- Kelsie RS Doering
Canadian Institutes of Health Research (PJT-153199)
- Stefan Taubert
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Douglas Portman, University of Rochester, United States
Version history
- Preprint posted: February 24, 2021 (view preprint)
- Received: February 26, 2021
- Accepted: March 12, 2022
- Accepted Manuscript published: March 14, 2022 (version 1)
- Version of Record published: March 28, 2022 (version 2)
- Version of Record updated: January 5, 2023 (version 3)
Copyright
© 2022, Doering et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,551
- Page views
-
- 229
- Downloads
-
- 4
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Chromosomes and Gene Expression
The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin–DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.
-
- Chromosomes and Gene Expression
- Developmental Biology
Though long non-coding RNAs (lncRNAs) represent a substantial fraction of the Pol II transcripts in multicellular animals, only a few have known functions. Here we report that the blocking activity of the Bithorax complex (BX-C) Fub-1 boundary is segmentally regulated by its own lncRNA. The Fub-1 boundary is located between the Ultrabithorax (Ubx) gene and the bxd/pbx regulatory domain, which is responsible for regulating Ubx expression in parasegment PS6/segment A1. Fub-1 consists of two hypersensitive sites, HS1 and HS2. HS1 is an insulator while HS2 functions primarily as an lncRNA promoter. To activate Ubx expression in PS6/A1, enhancers in the bxd/pbx domain must be able to bypass Fub-1 blocking activity. We show that the expression of the Fub-1 lncRNAs in PS6/A1 from the HS2 promoter inactivates Fub-1 insulating activity. Inactivation is due to read-through as the HS2 promoter must be directed toward HS1 to disrupt blocking.