Nuclear Hormone Receptor NHR-49 acts in parallel with HIF-1 to promote hypoxia adaptation in Caenorhabditis elegans

  1. Kelsie RS Doering
  2. Xuanjin Cheng
  3. Luke Milburn
  4. Ramesh Ratnappan
  5. Arjumand Ghazi
  6. Dana L Miller
  7. Stefan Taubert  Is a corresponding author
  1. University of British Columbia, Canada
  2. University of Washington, United States
  3. University of Pittsburgh School of Medicine, United States

Abstract

Caenorhabditis elegans Nuclear Hormone Receptor NHR-49, an orthologue of mammalian Peroxisome Proliferator-Activated Receptor alpha (PPARα). We show that nhr-49 is required for animal survival in hypoxia and is synthetic lethal with hif-1 in this context, demonstrating that these factors act in parallel. RNA-seq analysis shows that in hypoxia nhr-49 regulates a set of genes that are hif-1-independent, including autophagy genes that promote hypoxia survival. We further show that Nuclear Hormone Receptor nhr-67 is a negative regulator and Homeodomain-interacting Protein Kinase hpk-1 is a positive regulator of the NHR-49 pathway. Together, our experiments define a new, essential hypoxia response pathway that acts in parallel with the well-known HIF-mediated hypoxia response.

Data availability

RNA-seq data have been deposited at NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under the record GSE166788.All data generated or analysed during this study are included in the manuscript and Supplementary Tables. Raw data points from each N are shown in figures where-ever possible. See transparent reporting form for details.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kelsie RS Doering

    Graduate Program in Medical Genetics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Xuanjin Cheng

    Department of Medical Genetics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Luke Milburn

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ramesh Ratnappan

    Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7055-9043
  5. Arjumand Ghazi

    Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dana L Miller

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3983-0493
  7. Stefan Taubert

    Graduate Program in Medical Genetics, University of British Columbia, Vancouver, Canada
    For correspondence
    taubert@cmmt.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2432-7257

Funding

National Institutes of Health (R56AG066682)

  • Arjumand Ghazi

BC Children's Hospital Foundation

  • Stefan Taubert

Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-05133)

  • Stefan Taubert

National Institutes of Health (R01AG051659)

  • Arjumand Ghazi

Cancer Research Society (22727)

  • Stefan Taubert

BC Children's Hospital Foundation

  • Kelsie RS Doering

Canada Research Chairs

  • Stefan Taubert

National Institutes of Health (R01AG044378)

  • Dana L Miller

Natural Sciences and Engineering Research Council of Canada

  • Kelsie RS Doering

Canadian Institutes of Health Research (PJT-153199)

  • Stefan Taubert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Douglas Portman, University of Rochester, United States

Version history

  1. Preprint posted: February 24, 2021 (view preprint)
  2. Received: February 26, 2021
  3. Accepted: March 12, 2022
  4. Accepted Manuscript published: March 14, 2022 (version 1)
  5. Version of Record published: March 28, 2022 (version 2)
  6. Version of Record updated: January 5, 2023 (version 3)

Copyright

© 2022, Doering et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,067
    views
  • 277
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelsie RS Doering
  2. Xuanjin Cheng
  3. Luke Milburn
  4. Ramesh Ratnappan
  5. Arjumand Ghazi
  6. Dana L Miller
  7. Stefan Taubert
(2022)
Nuclear Hormone Receptor NHR-49 acts in parallel with HIF-1 to promote hypoxia adaptation in Caenorhabditis elegans
eLife 11:e67911.
https://doi.org/10.7554/eLife.67911

Share this article

https://doi.org/10.7554/eLife.67911

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.