Collagen polarization promotes epithelial elongation by stimulating locoregional cell proliferation

  1. Hiroko Katsuno-Kambe
  2. Jessica L Teo
  3. Robert J Ju
  4. James Hudson
  5. Samantha J Stehbens
  6. Alpha S Yap  Is a corresponding author
  1. The University of Queensland, Australia
  2. QIMR Berghofer Medical Research Institute, Australia

Abstract

Epithelial networks are commonly generated by processes where multicellular aggregates elongate and branch. Here we focus on understanding cellular mechanisms for elongation, using an organotypic culture system as a model of mammary epithelial anlage. Isotropic cell aggregates broke symmetry and slowly elongated when transplanted into collagen 1 gels. The elongating regions of aggregates displayed enhanced cell proliferation that was necessary for elongation to occur. Strikingly, this loco-regional increase in cell proliferation occurred where collagen 1 fibrils reorganized into bundles which were polarized with the elongating aggregates. Applying external stretch as a cell-independent way to reorganize the ECM, we found that collagen polarization stimulated regional cell proliferation to precipitate symmetry-breaking and elongation. This required b1-integrin and ERK signaling. We propose that collagen polarization supports epithelial anlagen elongation by stimulating loco-regional cell proliferation. This could provide a long-lasting structural memory of the initial axis that is generated when anlage break symmetry.

Data availability

All data generated and analysed in this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1-7.

Article and author information

Author details

  1. Hiroko Katsuno-Kambe

    Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0292-3506
  2. Jessica L Teo

    Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert J Ju

    Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9850-9803
  4. James Hudson

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Samantha J Stehbens

    Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8145-2708
  6. Alpha S Yap

    Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
    For correspondence
    a.yap@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1038-8956

Funding

National Health and Medical Research Council (Fellowship 1136592)

  • Alpha S Yap

National Health and Medical Research Council (GNT1123816)

  • Alpha S Yap

National Health and Medical Research Council (1140090)

  • Alpha S Yap

Australian Research Council (DP19010287)

  • Alpha S Yap

Australian Research Council (190102230)

  • Alpha S Yap

Australian Research Council (FT190100516)

  • Samantha J Stehbens

Snow Medical Fellowship

  • James Hudson

Uehara Memorial Foundation (Postdoctoral fellowship)

  • Hiroko Katsuno-Kambe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Katsuno-Kambe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,793
    views
  • 283
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroko Katsuno-Kambe
  2. Jessica L Teo
  3. Robert J Ju
  4. James Hudson
  5. Samantha J Stehbens
  6. Alpha S Yap
(2021)
Collagen polarization promotes epithelial elongation by stimulating locoregional cell proliferation
eLife 10:e67915.
https://doi.org/10.7554/eLife.67915

Share this article

https://doi.org/10.7554/eLife.67915

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.