The energetic basis for smooth human arm movements

  1. Jeremy D Wong  Is a corresponding author
  2. Tyler Cluff
  3. Arthur D Kuo
  1. Faculty of Kinesiology, Department of Biomedical Enginee, Canada
  2. University of Calgary, Canada

Abstract

The central nervous system plans human reaching movements with stereotypically smooth kinematic trajectories and fairly consistent durations. Smoothness seems to be explained by accuracy as a primary movement objective, whereas duration seems to economize energy expenditure. But the current understanding of energy expenditure does not explain smoothness, so that two aspects of the same movement are governed by seemingly incompatible objectives. Here we show that smoothness is actually economical, because humans expend more metabolic energy for jerkier motions. The proposed mechanism is an underappreciated cost proportional to the rate of muscle force production, for calcium transport to activate muscle. We experimentally tested that energy cost in humans (N=10) performing bimanual reaches cyclically. The empirical cost was then demonstrated to predict smooth, discrete reaches, previously attributed to accuracy alone. A mechanistic, physiologically measurable, energy cost may therefore explain both smoothness and duration in terms of economy, and help resolve motor redundancy in reaching movements.

Data availability

Data has been deposited to Dryad Digital Repository, accessible here: doi:10.5061/dryad.qfttdz0gn

The following data sets were generated

Article and author information

Author details

  1. Jeremy D Wong

    Department of Biomedical Engineering, Faculty of Kinesiology, Department of Biomedical Enginee, Calgary, Canada
    For correspondence
    jeremy.wong2@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5564-1794
  2. Tyler Cluff

    Faculty of Kinesiology, Department of Biomedical Enginee, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Arthur D Kuo

    Faculty of Kinesiology, Department of Biomedical Enginee, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

Benno Nigg Chair

  • Arthur D Kuo

NSERC Discovery and Research Chairs Program

  • Arthur D Kuo

Alberta Health Trust

  • Arthur D Kuo

NSERC Discovery

  • Tyler Cluff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alaa Ahmed, University of Colorado, United States

Ethics

Human subjects: Informed consent was obtained from all subjects and the Health Research Ethics Board approved of all procedures (REB18-1521).

Version history

  1. Preprint posted: December 29, 2020 (view preprint)
  2. Received: March 3, 2021
  3. Accepted: December 15, 2021
  4. Accepted Manuscript published: December 20, 2021 (version 1)
  5. Version of Record published: January 7, 2022 (version 2)
  6. Version of Record updated: January 27, 2022 (version 3)
  7. Version of Record updated: February 3, 2022 (version 4)

Copyright

© 2021, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,543
    views
  • 207
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremy D Wong
  2. Tyler Cluff
  3. Arthur D Kuo
(2021)
The energetic basis for smooth human arm movements
eLife 10:e68013.
https://doi.org/10.7554/eLife.68013

Share this article

https://doi.org/10.7554/eLife.68013

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.