The human amniotic epithelium confers a bias to differentiate toward the neuroectoderm lineage in human embryonic stem cells

  1. Daniela Ávila-González  Is a corresponding author
  2. Wendy Portillo
  3. Carla P Barragán-Álvarez
  4. Georgina Hernandez-Montes
  5. Eliezer Flores-Garza
  6. Anayansi Molina-Hernández
  7. Nestor Emmanuel Diaz-Martinez
  8. Nestor F Diaz  Is a corresponding author
  1. Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico
  2. Universidad Nacional Autónoma de México, Mexico
  3. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Mexico

Abstract

Human embryonic stem cells (hESC) derive from the epiblast and have pluripotent potential. To maintain the conventional conditions of the pluripotent potential in an undifferentiated state, inactivated mouse embryonic fibroblast (iMEF) is used as a feeder layer. However, it has been suggested that hESC under this conventional condition (hESC-iMEF) is an artifact that does not correspond to the in vitro counterpart of the human epiblast. Our previous studies demonstrated the use of an alternative feeder layer of human amniotic epithelial cells (hAEC) to derive and maintain hESC. We wondered if the hESC-hAEC culture could represent a different pluripotent stage than that of naïve or primed conventional conditions, simulating the stage in which the amniotic epithelium derives from the epiblast during peri-implantation. Like the conventional primed hESC-iMEF, hESC-hAEC has the same levels of expression as the 'pluripotency core'; and does not express markers of naïve pluripotency. However, it presents a downregulation of HOX genes and genes associated with the endoderm and mesoderm and it exhibits an increase in the expression of ectoderm lineage genes, specifically in the anterior neuroectoderm. Transcriptome analysis showed in hESC-hAEC an upregulated signature of genes coding for transcription factors involved in neural induction and forebrain development, and the ability to differentiate into a neural lineage was superior in comparison with conventional hESC-iMEF. We propose that the interaction of hESC with hAEC confers hESC a biased potential that resembles the anteriorized epiblast, which is predisposed to form the neural ectoderm.

Data availability

RNA-seq data from Amiqui-1 are available at the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10347/) under accession number E-MTAB-10347. Source code for the following analyses is available as indicated: BioJupies, https://github.com/MaayanLab/biojupies.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Daniela Ávila-González

    Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
    For correspondence
    siriusyami@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Wendy Portillo

    Behavioral and Cognitive Neurobiology, Universidad Nacional Autónoma de México, Querétaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  3. Carla P Barragán-Álvarez

    Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  4. Georgina Hernandez-Montes

    Red Apoyo a la Investigacion UNAM, Universidad Nacional Autónoma de México, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  5. Eliezer Flores-Garza

    Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  6. Anayansi Molina-Hernández

    Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  7. Nestor Emmanuel Diaz-Martinez

    Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  8. Nestor F Diaz

    Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
    For correspondence
    nfdiaz00@yahoo.com.mx
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2436-9374

Funding

Instituto Nacional de Perinatología (21041 and 21081)

  • Nestor F Diaz

Consejo Nacional de Ciencia y Tecnología (130627,252756 and A1-S-8450)

  • Nestor F Diaz

Consejo Nacional de Ciencia y Tecnología (300638,271307)

  • Nestor Emmanuel Diaz-Martinez

FONDECIJAL (8084-2019)

  • Nestor Emmanuel Diaz-Martinez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua M Brickman, University of Copenhagen, Denmark

Version history

  1. Received: March 2, 2021
  2. Accepted: July 8, 2022
  3. Accepted Manuscript published: July 11, 2022 (version 1)
  4. Version of Record published: July 25, 2022 (version 2)

Copyright

© 2022, Ávila-González et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,398
    Page views
  • 251
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniela Ávila-González
  2. Wendy Portillo
  3. Carla P Barragán-Álvarez
  4. Georgina Hernandez-Montes
  5. Eliezer Flores-Garza
  6. Anayansi Molina-Hernández
  7. Nestor Emmanuel Diaz-Martinez
  8. Nestor F Diaz
(2022)
The human amniotic epithelium confers a bias to differentiate toward the neuroectoderm lineage in human embryonic stem cells
eLife 11:e68035.
https://doi.org/10.7554/eLife.68035

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Virginia L Pimmett, Mounia Lagha
    Insight

    Imaging experiments reveal the complex and dynamic nature of the transcriptional hubs associated with Notch signaling.

    1. Cell Biology
    2. Developmental Biology
    Simon Schneider, Andjela Kovacevic ... Hubert Schorle
    Research Article

    Cylicins are testis-specific proteins, which are exclusively expressed during spermiogenesis. In mice and humans, two Cylicins, the gonosomal X-linked Cylicin 1 (Cylc1/CYLC1) and the autosomal Cylicin 2 (Cylc2/CYLC2) genes, have been identified. Cylicins are cytoskeletal proteins with an overall positive charge due to lysine-rich repeats. While Cylicins have been localized in the acrosomal region of round spermatids, they resemble a major component of the calyx within the perinuclear theca at the posterior part of mature sperm nuclei. However, the role of Cylicins during spermiogenesis has not yet been investigated. Here, we applied CRISPR/Cas9-mediated gene editing in zygotes to establish Cylc1- and Cylc2-deficient mouse lines as a model to study the function of these proteins. Cylc1 deficiency resulted in male subfertility, whereas Cylc2-/-, Cylc1-/yCylc2+/-, and Cylc1-/yCylc2-/- males were infertile. Phenotypical characterization revealed that loss of Cylicins prevents proper calyx assembly during spermiogenesis. This results in decreased epididymal sperm counts, impaired shedding of excess cytoplasm, and severe structural malformations, ultimately resulting in impaired sperm motility. Furthermore, exome sequencing identified an infertile man with a hemizygous variant in CYLC1 and a heterozygous variant in CYLC2, displaying morphological abnormalities of the sperm including the absence of the acrosome. Thus, our study highlights the relevance and importance of Cylicins for spermiogenic remodeling and male fertility in human and mouse, and provides the basis for further studies on unraveling the complex molecular interactions between perinuclear theca proteins required during spermiogenesis.