The Shu complex prevents mutagenesis and cytotoxicity of single-strand specific alkylation lesions

  1. Braulio Bonilla
  2. Alexander I Brown
  3. Sarah R Hengel
  4. Kyle S Rapchak
  5. Debra Mitchell
  6. Catherine A Pressimone
  7. Adeola A Fagunloye
  8. Thong T Luong
  9. Reagan A Russell
  10. Rudri K Vyas
  11. Tony M Mertz
  12. Hani S Zaher
  13. Nima Mosammaparast
  14. Ewa P Malc
  15. Piotr A Mieczkowski
  16. Steven Roberts  Is a corresponding author
  17. Kara A Bernstein  Is a corresponding author
  1. University of Pittsburgh School of Medicine, United States
  2. Washington State University, United States
  3. Washington University in St Louis, United States
  4. University of North Carolina Chapel Hill, United States

Abstract

Three-methyl cytosine (3meC) are toxic DNA lesions, blocking base pairing. Bacteria and humans, express members of the AlkB enzymes family, which directly remove 3meC. However, other organisms, including budding yeast, lack this class of enzymes. It remains an unanswered evolutionary question as to how yeast repairs 3meC, particularly in single-stranded DNA. The yeast Shu complex, a conserved homologous recombination factor, aids in preventing replication-associated mutagenesis from DNA base damaging agents such as methyl methanesulfonate (MMS). We found that MMS-treated Shu complex-deficient cells, exhibit a genome-wide increase in A:T and G:C substitutions mutations. The G:C substitutions displayed transcriptional and replicational asymmetries consistent with mutations resulting from 3meC. Ectopic expression of a human AlkB homolog in Shu-deficient yeast rescues MMS-induced growth defects and increased mutagenesis. Thus, our work identifies a novel homologous recombination-based mechanism mediated by the Shu complex for coping with alkylation adducts.

Data availability

All unique mutations identified by DNA sequencing are reported in Supplemental Table 3 and all sequencing reads are reported in Supplemental Table 5. Raw sequencing reads in fastq format have been submitted to the NCBI short read archive under BioProject accession number PRJNA694993.

The following data sets were generated

Article and author information

Author details

  1. Braulio Bonilla

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander I Brown

    Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah R Hengel

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kyle S Rapchak

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Debra Mitchell

    Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine A Pressimone

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adeola A Fagunloye

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2383-9469
  8. Thong T Luong

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Reagan A Russell

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Rudri K Vyas

    Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Tony M Mertz

    Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Hani S Zaher

    Biology, Washington University in St Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7424-3617
  13. Nima Mosammaparast

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Ewa P Malc

    Genetics, University of North Carolina Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Piotr A Mieczkowski

    Genetics, University of North Carolina Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Steven Roberts

    Molecular Biosciences, Washington State University, Pullman, United States
    For correspondence
    steven.roberts2@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  17. Kara A Bernstein

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    For correspondence
    karab@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2247-6459

Funding

National Institutes of Health (ES030335)

  • Kara A Bernstein

National Institutes of Health (CA218112)

  • Steven Roberts

American Cancer Society (129182-RSG-16-043-01-DMC)

  • Kara A Bernstein

American Cancer Society (133947-PF-19-132-01-DMC)

  • Sarah R Hengel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bonilla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,381
    views
  • 176
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Braulio Bonilla
  2. Alexander I Brown
  3. Sarah R Hengel
  4. Kyle S Rapchak
  5. Debra Mitchell
  6. Catherine A Pressimone
  7. Adeola A Fagunloye
  8. Thong T Luong
  9. Reagan A Russell
  10. Rudri K Vyas
  11. Tony M Mertz
  12. Hani S Zaher
  13. Nima Mosammaparast
  14. Ewa P Malc
  15. Piotr A Mieczkowski
  16. Steven Roberts
  17. Kara A Bernstein
(2021)
The Shu complex prevents mutagenesis and cytotoxicity of single-strand specific alkylation lesions
eLife 10:e68080.
https://doi.org/10.7554/eLife.68080

Share this article

https://doi.org/10.7554/eLife.68080

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.