The Shu complex prevents mutagenesis and cytotoxicity of single-strand specific alkylation lesions

  1. Braulio Bonilla
  2. Alexander I Brown
  3. Sarah R Hengel
  4. Kyle S Rapchak
  5. Debra Mitchell
  6. Catherine A Pressimone
  7. Adeola A Fagunloye
  8. Thong T Luong
  9. Reagan A Russell
  10. Rudri K Vyas
  11. Tony M Mertz
  12. Hani S Zaher
  13. Nima Mosammaparast
  14. Ewa P Malc
  15. Piotr A Mieczkowski
  16. Steven Roberts  Is a corresponding author
  17. Kara A Bernstein  Is a corresponding author
  1. University of Pittsburgh School of Medicine, United States
  2. Washington State University, United States
  3. Washington University in St Louis, United States
  4. University of North Carolina Chapel Hill, United States

Abstract

Three-methyl cytosine (3meC) are toxic DNA lesions, blocking base pairing. Bacteria and humans, express members of the AlkB enzymes family, which directly remove 3meC. However, other organisms, including budding yeast, lack this class of enzymes. It remains an unanswered evolutionary question as to how yeast repairs 3meC, particularly in single-stranded DNA. The yeast Shu complex, a conserved homologous recombination factor, aids in preventing replication-associated mutagenesis from DNA base damaging agents such as methyl methanesulfonate (MMS). We found that MMS-treated Shu complex-deficient cells, exhibit a genome-wide increase in A:T and G:C substitutions mutations. The G:C substitutions displayed transcriptional and replicational asymmetries consistent with mutations resulting from 3meC. Ectopic expression of a human AlkB homolog in Shu-deficient yeast rescues MMS-induced growth defects and increased mutagenesis. Thus, our work identifies a novel homologous recombination-based mechanism mediated by the Shu complex for coping with alkylation adducts.

Data availability

All unique mutations identified by DNA sequencing are reported in Supplemental Table 3 and all sequencing reads are reported in Supplemental Table 5. Raw sequencing reads in fastq format have been submitted to the NCBI short read archive under BioProject accession number PRJNA694993.

The following data sets were generated

Article and author information

Author details

  1. Braulio Bonilla

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander I Brown

    Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah R Hengel

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kyle S Rapchak

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Debra Mitchell

    Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine A Pressimone

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adeola A Fagunloye

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2383-9469
  8. Thong T Luong

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Reagan A Russell

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Rudri K Vyas

    Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Tony M Mertz

    Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Hani S Zaher

    Biology, Washington University in St Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7424-3617
  13. Nima Mosammaparast

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Ewa P Malc

    Genetics, University of North Carolina Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Piotr A Mieczkowski

    Genetics, University of North Carolina Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Steven Roberts

    Molecular Biosciences, Washington State University, Pullman, United States
    For correspondence
    steven.roberts2@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  17. Kara A Bernstein

    Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    For correspondence
    karab@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2247-6459

Funding

National Institutes of Health (ES030335)

  • Kara A Bernstein

National Institutes of Health (CA218112)

  • Steven Roberts

American Cancer Society (129182-RSG-16-043-01-DMC)

  • Kara A Bernstein

American Cancer Society (133947-PF-19-132-01-DMC)

  • Sarah R Hengel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrés Aguilera, CABIMER, Universidad de Sevilla, Spain

Version history

  1. Received: March 4, 2021
  2. Preprint posted: April 11, 2021 (view preprint)
  3. Accepted: October 29, 2021
  4. Accepted Manuscript published: November 1, 2021 (version 1)
  5. Version of Record published: November 23, 2021 (version 2)

Copyright

© 2021, Bonilla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,265
    views
  • 160
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Braulio Bonilla
  2. Alexander I Brown
  3. Sarah R Hengel
  4. Kyle S Rapchak
  5. Debra Mitchell
  6. Catherine A Pressimone
  7. Adeola A Fagunloye
  8. Thong T Luong
  9. Reagan A Russell
  10. Rudri K Vyas
  11. Tony M Mertz
  12. Hani S Zaher
  13. Nima Mosammaparast
  14. Ewa P Malc
  15. Piotr A Mieczkowski
  16. Steven Roberts
  17. Kara A Bernstein
(2021)
The Shu complex prevents mutagenesis and cytotoxicity of single-strand specific alkylation lesions
eLife 10:e68080.
https://doi.org/10.7554/eLife.68080

Share this article

https://doi.org/10.7554/eLife.68080

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Roberto Efraín Díaz, Andrew K Ecker ... James S Fraser
    Research Article

    Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high-resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marian Brenner, Christoph Zink ... Antje Gohla
    Research Article

    Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5’-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.