A deep learning algorithm to translate and classify cardiac electrophysiology

  1. Parya Aghasafari Ph.D.
  2. Pei-Chi Yang Ph.D.
  3. Divya C Kernik Ph.D.
  4. Kazuho Sakamoto Ph.D.
  5. Yasunari Kanda Ph.D.
  6. Junko Kurokawa Ph.D
  7. Igor Vorobyov
  8. Colleen E Clancy Ph.D.  Is a corresponding author
  1. University of California Davis, United States
  2. Washington University in St. Louis, United States
  3. University of Shizuoka, Japan
  4. National Institute of Health Sciences, Japan
  5. University California Davis, United States

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parya Aghasafari Ph.D.
  2. Pei-Chi Yang Ph.D.
  3. Divya C Kernik Ph.D.
  4. Kazuho Sakamoto Ph.D.
  5. Yasunari Kanda Ph.D.
  6. Junko Kurokawa Ph.D
  7. Igor Vorobyov
  8. Colleen E Clancy Ph.D.
(2021)
A deep learning algorithm to translate and classify cardiac electrophysiology
eLife 10:e68335.
https://doi.org/10.7554/eLife.68335

Share this article

https://doi.org/10.7554/eLife.68335