A deep learning algorithm to translate and classify cardiac electrophysiology
Abstract
The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology and pharmacology. We designed a new deep learning multitask network approach intended to address the low throughput, high variability and immature phenotype of the iPSC-CM platform. The rationale for combining translation and classification tasks is because the most likely application of the deep learning technology we describe here is to translate iPSC-CMs following application of a perturbation. The deep learning network was trained using simulated action potential (AP) data and applied to classify cells into the drug-free and drugged categories and to predict the impact of electrophysiological perturbation across the continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was found to contain the key information required for successful network multitasking. We also demonstrated successful translation of both experimental and simulated iPSC-CM AP data validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte APs by the latter.
Data availability
Since we used simulated data, we have made all drugged and drug-free iPSC-CM and adult-CM AP data used for training and testing the multitask network publicly available at Clancy lab Github.(https://github.com/ClancyLabUCD/Multitask_network/tree/master/data). In addition, we have illustrated training and test dataset in Figure1 and Figure5.We have also shared the jupyter notebook for preparing clean and organized data for training the network at Clancy lab Github (https://github.com/ClancyLabUCD/Multitask_network/tree/master/jupyter).We also made experimental data used for the model validation publicly available at Clancy lab Github.(https://github.com/ClancyLabUCD/Multitask_network/blob/master/data/clean_data/experiments.csv ). Figure 7 illustrates the experimental data we used to validate the network.
Article and author information
Author details
Funding
Common Fund (OT2OD026580)
- Igor Vorobyov
- Colleen E Clancy Ph.D.
Texas Advanced Computing Center Leadership Resource Allocation (MCB20010)
- Igor Vorobyov
- Colleen E Clancy Ph.D.
Oracle cloud for research allocation
- Igor Vorobyov
- Colleen E Clancy Ph.D.
Common Fund (OT2OD025308‐01S2)
- Parya Aghasafari Ph.D.
American Heart Association (19CDA34770101)
- Igor Vorobyov
National Heart, Lung, and Blood Institute (R01HL152681)
- Igor Vorobyov
- Colleen E Clancy Ph.D.
National Heart, Lung, and Blood Institute (R01HL128170)
- Colleen E Clancy Ph.D.
National Heart, Lung, and Blood Institute (U01HL126273)
- Colleen E Clancy Ph.D.
Department of Physiology and Membrane Biology Research Partnership Fund
- Igor Vorobyov
- Colleen E Clancy Ph.D.
Extreme Science and Engineering Discovery Environment (MCB170095)
- Igor Vorobyov
- Colleen E Clancy Ph.D.
National Center for Supercomputing Applications Blue Waters Broadening Participation Allocation
- Igor Vorobyov
- Colleen E Clancy Ph.D.
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Aghasafari et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,053
- views
-
- 296
- downloads
-
- 23
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Computational and Systems Biology
Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.
-
- Computational and Systems Biology
- Neuroscience
Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.