A deep learning algorithm to translate and classify cardiac electrophysiology

  1. Parya Aghasafari Ph.D.
  2. Pei-Chi Yang Ph.D.
  3. Divya C Kernik Ph.D.
  4. Kazuho Sakamoto Ph.D.
  5. Yasunari Kanda Ph.D.
  6. Junko Kurokawa Ph.D
  7. Igor Vorobyov
  8. Colleen E Clancy Ph.D.  Is a corresponding author
  1. University of California Davis, United States
  2. Washington University in St. Louis, United States
  3. University of Shizuoka, Japan
  4. National Institute of Health Sciences, Japan
  5. University California Davis, United States

Abstract

The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology and pharmacology. We designed a new deep learning multitask network approach intended to address the low throughput, high variability and immature phenotype of the iPSC-CM platform. The rationale for combining translation and classification tasks is because the most likely application of the deep learning technology we describe here is to translate iPSC-CMs following application of a perturbation. The deep learning network was trained using simulated action potential (AP) data and applied to classify cells into the drug-free and drugged categories and to predict the impact of electrophysiological perturbation across the continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was found to contain the key information required for successful network multitasking. We also demonstrated successful translation of both experimental and simulated iPSC-CM AP data validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte APs by the latter.

Data availability

Since we used simulated data, we have made all drugged and drug-free iPSC-CM and adult-CM AP data used for training and testing the multitask network publicly available at Clancy lab Github.(https://github.com/ClancyLabUCD/Multitask_network/tree/master/data). In addition, we have illustrated training and test dataset in Figure1 and Figure5.We have also shared the jupyter notebook for preparing clean and organized data for training the network at Clancy lab Github (https://github.com/ClancyLabUCD/Multitask_network/tree/master/jupyter).We also made experimental data used for the model validation publicly available at Clancy lab Github.(https://github.com/ClancyLabUCD/Multitask_network/blob/master/data/clean_data/experiments.csv ). Figure 7 illustrates the experimental data we used to validate the network.

Article and author information

Author details

  1. Parya Aghasafari Ph.D.

    Physiology and Membrane Biology, University of California Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Pei-Chi Yang Ph.D.

    Physiology and Membrane Biology, University of California Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Divya C Kernik Ph.D.

    Biomedical Engineering, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kazuho Sakamoto Ph.D.

    Bio-Informational Pharmacology, University of Shizuoka, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yasunari Kanda Ph.D.

    Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2527-3526
  6. Junko Kurokawa Ph.D

    Bio-Informational Pharmacology, University of Shizuoka, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Igor Vorobyov

    University California Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4767-5297
  8. Colleen E Clancy Ph.D.

    Physiology and Membrane Biology, University of California Davis, Davis, United States
    For correspondence
    ceclancy@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6849-4885

Funding

Common Fund (OT2OD026580)

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

Texas Advanced Computing Center Leadership Resource Allocation (MCB20010)

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

Oracle cloud for research allocation

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

Common Fund (OT2OD025308‐01S2)

  • Parya Aghasafari Ph.D.

American Heart Association (19CDA34770101)

  • Igor Vorobyov

National Heart, Lung, and Blood Institute (R01HL152681)

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

National Heart, Lung, and Blood Institute (R01HL128170)

  • Colleen E Clancy Ph.D.

National Heart, Lung, and Blood Institute (U01HL126273)

  • Colleen E Clancy Ph.D.

Department of Physiology and Membrane Biology Research Partnership Fund

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

Extreme Science and Engineering Discovery Environment (MCB170095)

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

National Center for Supercomputing Applications Blue Waters Broadening Participation Allocation

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Aghasafari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,916
    views
  • 274
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parya Aghasafari Ph.D.
  2. Pei-Chi Yang Ph.D.
  3. Divya C Kernik Ph.D.
  4. Kazuho Sakamoto Ph.D.
  5. Yasunari Kanda Ph.D.
  6. Junko Kurokawa Ph.D
  7. Igor Vorobyov
  8. Colleen E Clancy Ph.D.
(2021)
A deep learning algorithm to translate and classify cardiac electrophysiology
eLife 10:e68335.
https://doi.org/10.7554/eLife.68335

Share this article

https://doi.org/10.7554/eLife.68335

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.