A deep learning algorithm to translate and classify cardiac electrophysiology

  1. Parya Aghasafari Ph.D.
  2. Pei-Chi Yang Ph.D.
  3. Divya C Kernik Ph.D.
  4. Kazuho Sakamoto Ph.D.
  5. Yasunari Kanda Ph.D.
  6. Junko Kurokawa Ph.D
  7. Igor Vorobyov
  8. Colleen E Clancy Ph.D.  Is a corresponding author
  1. University of California Davis, United States
  2. Washington University in St. Louis, United States
  3. University of Shizuoka, Japan
  4. National Institute of Health Sciences, Japan
  5. University California Davis, United States

Abstract

The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology and pharmacology. We designed a new deep learning multitask network approach intended to address the low throughput, high variability and immature phenotype of the iPSC-CM platform. The rationale for combining translation and classification tasks is because the most likely application of the deep learning technology we describe here is to translate iPSC-CMs following application of a perturbation. The deep learning network was trained using simulated action potential (AP) data and applied to classify cells into the drug-free and drugged categories and to predict the impact of electrophysiological perturbation across the continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was found to contain the key information required for successful network multitasking. We also demonstrated successful translation of both experimental and simulated iPSC-CM AP data validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte APs by the latter.

Data availability

Since we used simulated data, we have made all drugged and drug-free iPSC-CM and adult-CM AP data used for training and testing the multitask network publicly available at Clancy lab Github.(https://github.com/ClancyLabUCD/Multitask_network/tree/master/data). In addition, we have illustrated training and test dataset in Figure1 and Figure5.We have also shared the jupyter notebook for preparing clean and organized data for training the network at Clancy lab Github (https://github.com/ClancyLabUCD/Multitask_network/tree/master/jupyter).We also made experimental data used for the model validation publicly available at Clancy lab Github.(https://github.com/ClancyLabUCD/Multitask_network/blob/master/data/clean_data/experiments.csv ). Figure 7 illustrates the experimental data we used to validate the network.

Article and author information

Author details

  1. Parya Aghasafari Ph.D.

    Physiology and Membrane Biology, University of California Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Pei-Chi Yang Ph.D.

    Physiology and Membrane Biology, University of California Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Divya C Kernik Ph.D.

    Biomedical Engineering, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kazuho Sakamoto Ph.D.

    Bio-Informational Pharmacology, University of Shizuoka, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yasunari Kanda Ph.D.

    Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2527-3526
  6. Junko Kurokawa Ph.D

    Bio-Informational Pharmacology, University of Shizuoka, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Igor Vorobyov

    University California Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4767-5297
  8. Colleen E Clancy Ph.D.

    Physiology and Membrane Biology, University of California Davis, Davis, United States
    For correspondence
    ceclancy@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6849-4885

Funding

Common Fund (OT2OD026580)

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

Texas Advanced Computing Center Leadership Resource Allocation (MCB20010)

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

Oracle cloud for research allocation

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

Common Fund (OT2OD025308‐01S2)

  • Parya Aghasafari Ph.D.

American Heart Association (19CDA34770101)

  • Igor Vorobyov

National Heart, Lung, and Blood Institute (R01HL152681)

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

National Heart, Lung, and Blood Institute (R01HL128170)

  • Colleen E Clancy Ph.D.

National Heart, Lung, and Blood Institute (U01HL126273)

  • Colleen E Clancy Ph.D.

Department of Physiology and Membrane Biology Research Partnership Fund

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

Extreme Science and Engineering Discovery Environment (MCB170095)

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

National Center for Supercomputing Applications Blue Waters Broadening Participation Allocation

  • Igor Vorobyov
  • Colleen E Clancy Ph.D.

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Aghasafari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,954
    views
  • 281
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parya Aghasafari Ph.D.
  2. Pei-Chi Yang Ph.D.
  3. Divya C Kernik Ph.D.
  4. Kazuho Sakamoto Ph.D.
  5. Yasunari Kanda Ph.D.
  6. Junko Kurokawa Ph.D
  7. Igor Vorobyov
  8. Colleen E Clancy Ph.D.
(2021)
A deep learning algorithm to translate and classify cardiac electrophysiology
eLife 10:e68335.
https://doi.org/10.7554/eLife.68335

Share this article

https://doi.org/10.7554/eLife.68335

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.