Eukaryotic initiation factor EIF-3.G augments mRNA translation efficiency to regulate neuronal activity

  1. Stephen M Blazie
  2. Seika Takayanagi-Kiya
  3. Katherine M McCulloch
  4. Yishi Jin  Is a corresponding author
  1. University of California San Diego, United States

Abstract

The translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of the C. elegans RNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5′UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5′UTR dependent manner. Our study reveals an in vivo mechanism for eIF3 in governing neuronal protein levels to control neuronal activity states and offers insights into how eIF3 dysregulation contributes to neuronal disorders.

Data availability

Raw and processed seCLIP datasets from this study have been uploaded to the Gene Expression Omnibus (GEO) under accession number GSE152704.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Stephen M Blazie

    Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seika Takayanagi-Kiya

    Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katherine M McCulloch

    Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yishi Jin

    Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
    For correspondence
    yijin@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9371-9860

Funding

National Institute of Health (NS R37 035546)

  • Yishi Jin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne E West, Duke University School of Medicine, United States

Version history

  1. Received: March 11, 2021
  2. Preprint posted: March 16, 2021 (view preprint)
  3. Accepted: July 28, 2021
  4. Accepted Manuscript published: July 29, 2021 (version 1)
  5. Version of Record published: August 10, 2021 (version 2)

Copyright

© 2021, Blazie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,488
    views
  • 216
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephen M Blazie
  2. Seika Takayanagi-Kiya
  3. Katherine M McCulloch
  4. Yishi Jin
(2021)
Eukaryotic initiation factor EIF-3.G augments mRNA translation efficiency to regulate neuronal activity
eLife 10:e68336.
https://doi.org/10.7554/eLife.68336

Share this article

https://doi.org/10.7554/eLife.68336

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.