Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus and an endemic state

  1. Alexei V Tkachenko  Is a corresponding author
  2. Sergei Maslov  Is a corresponding author
  3. Tong Wang
  4. Ahmed Elbana
  5. George N Wong
  6. Nigel Goldenfeld
  1. Brookhaven National Laboratory, United States
  2. University of Illinois Urbana-Champaign, United States
  3. University of Illinois at Urbana-Champaign, United States

Abstract

It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, i.e. constant in time, here we discuss the consequences of dynamic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models we demonstrate the emergence of a new long timescale governing the epidemic, in broad agreement with empirical data. Our Stochastic Social Activity model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of a long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to an endemic state.

Data availability

All code needed to reproduce results of our Agent Based Model and fits of the epidemic dynamics in US regions is available on Github https://github.com/maslov-group/COVID-19-waves-and-plateaus

Article and author information

Author details

  1. Alexei V Tkachenko

    Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, United States
    For correspondence
    oleksiyt@bnl.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Sergei Maslov

    Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, United States
    For correspondence
    maslov@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3701-492X
  3. Tong Wang

    Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ahmed Elbana

    Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. George N Wong

    Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nigel Goldenfeld

    Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

U.S. Department of Energy (DE-SC0012704)

  • Alexei V Tkachenko

University of Illinois at Urbana-Champaign (University of Illinois System Office,Office of Vice-Chancellor,the Grainger College of Engineering)

  • Sergei Maslov
  • Tong Wang
  • Ahmed Elbana
  • George N Wong
  • Nigel Goldenfeld

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,928
    views
  • 372
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexei V Tkachenko
  2. Sergei Maslov
  3. Tong Wang
  4. Ahmed Elbana
  5. George N Wong
  6. Nigel Goldenfeld
(2021)
Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus and an endemic state
eLife 10:e68341.
https://doi.org/10.7554/eLife.68341

Share this article

https://doi.org/10.7554/eLife.68341

Further reading

    1. Physics of Living Systems
    Sina Heydari, Haotian Hang, Eva Kanso
    Research Article

    The coordinated motion of animal groups through fluids is thought to reduce the cost of locomotion to individuals in the group. However, the connection between the spatial patterns observed in collectively moving animals and the energetic benefits at each position within the group remains unclear. To address this knowledge gap, we study the spontaneous emergence of cohesive formations in groups of fish, modeled as flapping foils, all heading in the same direction. We show in pairwise formations and with increasing group size that (1) in side-by-side arrangements, the reciprocal nature of flow coupling results in an equal distribution of energy requirements among all members, with reduction in cost of locomotion for swimmers flapping inphase but an increase in cost for swimmers flapping antiphase, and (2) in inline arrangements, flow coupling is non-reciprocal for all flapping phase, with energetic savings in favor of trailing swimmers, but only up to a finite number of swimmers, beyond which school cohesion and energetic benefits are lost at once. We explain these findings mechanistically and we provide efficient diagnostic tools for identifying locations in the wake of single and multiple swimmers that offer opportunities for hydrodynamic benefits to aspiring followers. Our results imply a connection between the resources generated by flow physics and social traits that influence greedy and cooperative group behavior.

    1. Developmental Biology
    2. Physics of Living Systems
    Fridtjof Brauns, Nikolas H Claussen ... Boris I Shraiman
    Research Article

    Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.