Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus and an endemic state

  1. Alexei V Tkachenko  Is a corresponding author
  2. Sergei Maslov  Is a corresponding author
  3. Tong Wang
  4. Ahmed Elbana
  5. George N Wong
  6. Nigel Goldenfeld
  1. Brookhaven National Laboratory, United States
  2. University of Illinois Urbana-Champaign, United States
  3. University of Illinois at Urbana-Champaign, United States

Abstract

It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, i.e. constant in time, here we discuss the consequences of dynamic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models we demonstrate the emergence of a new long timescale governing the epidemic, in broad agreement with empirical data. Our Stochastic Social Activity model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of a long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to an endemic state.

Data availability

All code needed to reproduce results of our Agent Based Model and fits of the epidemic dynamics in US regions is available on Github https://github.com/maslov-group/COVID-19-waves-and-plateaus

Article and author information

Author details

  1. Alexei V Tkachenko

    Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, United States
    For correspondence
    oleksiyt@bnl.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Sergei Maslov

    Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, United States
    For correspondence
    maslov@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3701-492X
  3. Tong Wang

    Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ahmed Elbana

    Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. George N Wong

    Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nigel Goldenfeld

    Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

U.S. Department of Energy (DE-SC0012704)

  • Alexei V Tkachenko

University of Illinois at Urbana-Champaign (University of Illinois System Office,Office of Vice-Chancellor,the Grainger College of Engineering)

  • Sergei Maslov
  • Tong Wang
  • Ahmed Elbana
  • George N Wong
  • Nigel Goldenfeld

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marc Lipsitch, Harvard TH Chan School of Public Health, United States

Publication history

  1. Preprint posted: February 1, 2021 (view preprint)
  2. Received: March 12, 2021
  3. Accepted: November 4, 2021
  4. Accepted Manuscript published: November 8, 2021 (version 1)
  5. Version of Record published: December 14, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,229
    Page views
  • 233
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexei V Tkachenko
  2. Sergei Maslov
  3. Tong Wang
  4. Ahmed Elbana
  5. George N Wong
  6. Nigel Goldenfeld
(2021)
Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus and an endemic state
eLife 10:e68341.
https://doi.org/10.7554/eLife.68341
  1. Further reading

Further reading

    1. Physics of Living Systems
    Steffen Geisel et al.
    Research Article

    Biofilms, bacterial communities of cells encased by a self-produced matrix, exhibit a variety of three-dimensional structures. Specifically, channel networks formed within the bulk of the biofilm have been identified to play an important role in the colonies' viability by promoting the transport of nutrients and chemicals. Here, we study channel formation and focus on the role of the adhesion of the biofilm matrix to the substrate in Pseudomonas aeruginosa biofilms grown under constant flow in microfluidic channels. We perform phase contrast and confocal laser scanning microscopy to examine the development of the biofilm structure as a function of the substrates' surface energy. The formation of the wrinkles and folds is triggered by a mechanical buckling instability, controlled by biofilm growth rate and the film’s adhesion to the substrate. The three-dimensional folding gives rise to hollow channels that rapidly increase the effective volume occupied by the biofilm and facilitate bacterial movement inside them. The experiments and analysis on mechanical instabilities for the relevant case of a bacterial biofilm grown during flow enable us to predict and control the biofilm morphology.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Urszula Łapińska et al.
    Research Article

    Phenotypic variations between individual microbial cells play a key role in the resistance of microbial pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality in antibiotic accumulation. Here, we hypothesise that phenotypic diversification can be driven by fundamental cell-to-cell differences in drug transport rates. To test this hypothesis, we employed microfluidics-based single-cell microscopy, libraries of fluorescent antibiotic probes and mathematical modelling. This approach allowed us to rapidly identify phenotypic variants that avoid antibiotic accumulation within populations of Escherichia coli, Pseudomonas aeruginosa, Burkholderia cenocepacia, and Staphylococcus aureus. Crucially, we found that fast growing phenotypic variants avoid macrolide accumulation and survive treatment without genetic mutations. These findings are in contrast with the current consensus that cellular dormancy and slow metabolism underlie bacterial survival to antibiotics. Our results also show that fast growing variants display significantly higher expression of ribosomal promoters before drug treatment compared to slow growing variants. Drug-free active ribosomes facilitate essential cellular processes in these fast-growing variants, including efflux that can reduce macrolide accumulation. We used this new knowledge to eradicate variants that displayed low antibiotic accumulation through the chemical manipulation of their outer membrane inspiring new avenues to overcome current antibiotic treatment failures.