UBTD1 regulates ceramide balance and endolysosomal positioning to coordinate EGFR signaling

  1. Stéphanie Torrino  Is a corresponding author
  2. Victor Tiroille
  3. Bastien Dolfi
  4. Maeva Dufies
  5. Charlotte Hinault
  6. Laurent Bonesso
  7. Sonia Dagnino
  8. Jennifer Uhler
  9. Marie Irondelle
  10. Anne-sophie Gay
  11. Lucile Fleuriot
  12. Delphine Debayle
  13. Sandra Lacas-Gervais
  14. Mireille Cormont
  15. Thomas Bertero
  16. Frederic Bost
  17. Jerome Gilleron
  18. Stephan Clavel  Is a corresponding author
  1. IPMC, France
  2. C3M, France
  3. Centre Scientifique de Monaco, Monaco
  4. CHU, France
  5. Imperial College London, United Kingdom
  6. University of Gothenburg, Sweden
  7. UFR Sciences, Université Côte d'Azur, France

Abstract

To adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that UBTD1 (Ubiquitin domain-containing protein 1) plays a crucial role in both the EGFR (Epidermal Growth Factor Receptor) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through ASAH1 (N-Acylsphingosine Amidohydrolase 1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR. On the other hand, UBTD1, via the ubiquitination of SQSTM1/p62 (Sequestosome 1) by RNF26 and endolysosome positioning, participates in the lysosomal degradation of EGFR. The coordination of these two ubiquitin-dependent processes contributes to the control of the duration of the EGFR signal. Moreover, we showed that UBTD1 depletion exacerbates EGFR signaling and induces cell proliferation emphasizing a hitherto unknown function of UBTD1 in EGFR-driven human cell proliferation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided.

Article and author information

Author details

  1. Stéphanie Torrino

    CNRS, IPMC, VALBONNE, France
    For correspondence
    stephanie.torrino@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8280-5907
  2. Victor Tiroille

    INSERM, C3M, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Bastien Dolfi

    INSERM, C3M, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Maeva Dufies

    Biomedical Department, Centre Scientifique de Monaco, Monaco, Monaco
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1732-0388
  5. Charlotte Hinault

    INSERM, C3M, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Laurent Bonesso

    Biochemistry Laboratory, CHU, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Sonia Dagnino

    MRC-PHE Centre for Environment & Health, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6846-7190
  8. Jennifer Uhler

    Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Marie Irondelle

    INSERM, C3M, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Anne-sophie Gay

    CNRS, IPMC, VALBONNE, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Lucile Fleuriot

    CNRS, IPMC, VALBONNE, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Delphine Debayle

    CNRS, IPMC, VALBONNE, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2807-9198
  13. Sandra Lacas-Gervais

    CCMA, UFR Sciences, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Mireille Cormont

    INSERM, C3M, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Thomas Bertero

    CNRS, IPMC, VALBONNE, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Frederic Bost

    INSERM, C3M, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4509-4701
  17. Jerome Gilleron

    INSERM, C3M, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  18. Stephan Clavel

    INSERM, C3M, Nice, France
    For correspondence
    Stephan.CLAVEL@univ-cotedazur.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-15-IDEX-01)

  • Stephan Clavel

Agence Nationale de la Recherche (ANR18-CE14-0035-01-GILLERON)

  • Jerome Gilleron

Fondation de France

  • Stéphanie Torrino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Torrino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,203
    views
  • 242
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stéphanie Torrino
  2. Victor Tiroille
  3. Bastien Dolfi
  4. Maeva Dufies
  5. Charlotte Hinault
  6. Laurent Bonesso
  7. Sonia Dagnino
  8. Jennifer Uhler
  9. Marie Irondelle
  10. Anne-sophie Gay
  11. Lucile Fleuriot
  12. Delphine Debayle
  13. Sandra Lacas-Gervais
  14. Mireille Cormont
  15. Thomas Bertero
  16. Frederic Bost
  17. Jerome Gilleron
  18. Stephan Clavel
(2021)
UBTD1 regulates ceramide balance and endolysosomal positioning to coordinate EGFR signaling
eLife 10:e68348.
https://doi.org/10.7554/eLife.68348

Share this article

https://doi.org/10.7554/eLife.68348

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.