Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay

  1. Joshua Batson
  2. Gytis Dudas
  3. Eric Haas-Stapleton
  4. Amy L Kistler  Is a corresponding author
  5. Lucy M Li
  6. Phoenix Logan
  7. Kalani Ratnasiri
  8. Hanna Retallack
  1. Chan Zuckerberg Biohub, United States
  2. Gothenburg Global Biodiversity Centre, Sweden
  3. Alameda County Mosquito Abatement District, United States
  4. Stanford University, United States
  5. University of California, San Francisco, United States

Abstract

Mosquitoes are major infectious disease-carrying vectors. Assessment of current and future risks associated with the mosquito population requires knowledge of the full repertoire of pathogens they carry, including novel viruses, as well as their blood meal sources. Unbiased metatranscriptomic sequencing of individual mosquitoes offers a straightforward, rapid and quantitative means to acquire this information. Here, we profile 148 diverse wild-caught mosquitoes collected in California and detect sequences from eukaryotes, prokaryotes, 24 known and 46 novel viral species. Importantly, sequencing individuals greatly enhanced the value of the biological information obtained. It allowed us to a) speciate host mosquito, b) compute the prevalence of each microbe and recognize a high frequency of viral co-infections, c) associate animal pathogens with specific blood meal sources, and d) apply simple co-occurrence methods to recover previously undetected components of highly prevalent segmented viruses. In the context of emerging diseases, where knowledge about vectors, pathogens, and reservoirs is lacking, the approaches described here can provide actionable information for public health surveillance and intervention decisions.

Data availability

Raw and assembled sequencing data are deposited in NCBI Bioproject PRJNA605178. Code is available on Github at https://github.com/czbiohub/california-mosquito-study. Derived data (including all contigs) and supplementary data are available on Figshare at dx.doi.org/10.6084/m9.figshare.11832999 .

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Joshua Batson

    Data Science, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gytis Dudas

    Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0227-4158
  3. Eric Haas-Stapleton

    Mosquito surveillance and control, Alameda County Mosquito Abatement District, Hayward, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amy L Kistler

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    amy.kistler@czbiohub.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1112-719X
  5. Lucy M Li

    Data Science, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6562-4004
  6. Phoenix Logan

    Data Sciences, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kalani Ratnasiri

    Program in Immunology, Stanford University, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5953-0004
  8. Hanna Retallack

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0533-9102

Funding

Chan Zuckerberg Initiative

  • Joshua Batson

UCSF Medical Science Training Program

  • Hanna Retallack

National Science Foundation

  • Kalani Ratnasiri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Version history

  1. Received: March 22, 2021
  2. Accepted: April 9, 2021
  3. Accepted Manuscript published: April 27, 2021 (version 1)
  4. Version of Record published: May 10, 2021 (version 2)

Copyright

© 2021, Batson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,598
    views
  • 760
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua Batson
  2. Gytis Dudas
  3. Eric Haas-Stapleton
  4. Amy L Kistler
  5. Lucy M Li
  6. Phoenix Logan
  7. Kalani Ratnasiri
  8. Hanna Retallack
(2021)
Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay
eLife 10:e68353.
https://doi.org/10.7554/eLife.68353

Share this article

https://doi.org/10.7554/eLife.68353

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Javier I Ottaviani, Virag Sagi-Kiss ... Gunter GC Kuhnle
    Research Article

    The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.