Preexisting memory CD4 T cells in naïve individuals confer robust immunity upon hepatitis B vaccination

  1. George Elias  Is a corresponding author
  2. Pieter Meysman
  3. Esther Bartholomeus
  4. Nicolas De Neuter
  5. Nina Keersmaekers
  6. Arvid Suls
  7. Hilde Jansens
  8. Aisha Souquette
  9. Hans De Reu
  10. Marie-Paule Emonds
  11. Evelien Smits
  12. Eva Lion
  13. Paul G Thomas
  14. Geert Mortier
  15. Pierre Van Damme
  16. Philippe Beutels
  17. Kris Laukens
  18. Viggo Van Tendeloo
  19. Benson Ogunjimi
  1. University of Antwerp, Belgium
  2. Antwerp University Hospital, Belgium
  3. St. Jude Children's Research Hospital, United States
  4. Rode Kruis-Vlaanderen, Belgium
  5. Johnson and Johnson, Belgium

Abstract

Antigen recognition through the T cell receptor (TCR) αβ heterodimer is one of the primary determinants of the adaptive immune response. Vaccines activate naïve T cells with high specificity to expand and differentiate into memory T cells. However, antigen-specific memory CD4 T cells exist in unexposed antigen-naïve hosts. In this study, we use high-throughput sequencing of memory CD4 TCRβ repertoire and machine learning to show that individuals with preexisting vaccine-reactive memory CD4 T cell clonotypes elicited earlier and higher antibody titers and mounted a more robust CD4 T cell response to hepatitis B vaccine. In addition, integration of TCRβ sequence patterns into a hepatitis B epitope-specific annotation model can predict which individuals will have an early and more vigorous vaccine-elicited immunity. Thus, the presence of preexisting memory T cell clonotypes has a significant impact on immunity and can be used to predict immune responses to vaccination.

Data availability

The sequencing data that support the findings of this study have been deposited on Zenodo (https://doi.org/10.5281/zenodo.3989144).

The following data sets were generated

Article and author information

Author details

  1. George Elias

    Laboratory of Experimental Hematology (LEH), University of Antwerp, Antwerp, Belgium
    For correspondence
    igeorgeelias@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8419-9544
  2. Pieter Meysman

    Biomedical Informatics Research Network Antwerp, Department of Mathematics and Informatics, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5903-633X
  3. Esther Bartholomeus

    Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  4. Nicolas De Neuter

    Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6011-6457
  5. Nina Keersmaekers

    Centre for Health Economics Research & Modeling Infectious Diseases, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  6. Arvid Suls

    Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  7. Hilde Jansens

    Department of Clinical Microbiology, Antwerp University Hospital, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  8. Aisha Souquette

    Department of Immunology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    No competing interests declared.
  9. Hans De Reu

    Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  10. Marie-Paule Emonds

    Histocompatibility and Immunogenetic Laboratory, Rode Kruis-Vlaanderen, Mechelen, Belgium
    Competing interests
    No competing interests declared.
  11. Evelien Smits

    Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  12. Eva Lion

    Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  13. Paul G Thomas

    Department of Immunology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    No competing interests declared.
  14. Geert Mortier

    Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  15. Pierre Van Damme

    Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  16. Philippe Beutels

    Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  17. Kris Laukens

    Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
  18. Viggo Van Tendeloo

    Janssen Research and Development, Immunosciences WWDA, Johnson and Johnson, Beerse, Belgium
    Competing interests
    Viggo Van Tendeloo, is an employee of Johnson & Johnson since 1/11/2019 and remains currently employed at the University of Antwerp.
  19. Benson Ogunjimi

    Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0831-2063

Funding

University of Antwerp

  • George Elias
  • Esther Bartholomeus
  • Nicolas De Neuter

Research Foundation Flanders

  • Pieter Meysman
  • Kris Laukens
  • Benson Ogunjimi

American Lebanese Syrian Associated Charities

  • Aisha Souquette
  • Paul G Thomas

National Institute of Allergy and Infectious Diseases

  • Aisha Souquette
  • Paul G Thomas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Protocols involving the use of human tissues were approved by the Ethics Committee of Antwerp University Hospital and University of Antwerp (Antwerp, Belgium), and all of the experiments were performed in accordance with the protocols

Copyright

© 2022, Elias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,245
    views
  • 329
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. George Elias
  2. Pieter Meysman
  3. Esther Bartholomeus
  4. Nicolas De Neuter
  5. Nina Keersmaekers
  6. Arvid Suls
  7. Hilde Jansens
  8. Aisha Souquette
  9. Hans De Reu
  10. Marie-Paule Emonds
  11. Evelien Smits
  12. Eva Lion
  13. Paul G Thomas
  14. Geert Mortier
  15. Pierre Van Damme
  16. Philippe Beutels
  17. Kris Laukens
  18. Viggo Van Tendeloo
  19. Benson Ogunjimi
(2022)
Preexisting memory CD4 T cells in naïve individuals confer robust immunity upon hepatitis B vaccination
eLife 11:e68388.
https://doi.org/10.7554/eLife.68388

Share this article

https://doi.org/10.7554/eLife.68388

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.

    1. Immunology and Inflammation
    Eugenio Antonio Carrera Silva, Juliana Puyssegur, Andrea Emilse Errasti
    Review Article

    The gut biome, a complex ecosystem of micro- and macro-organisms, plays a crucial role in human health. A disruption in this evolutive balance, particularly during early life, can lead to immune dysregulation and inflammatory disorders. ‘Biome repletion’ has emerged as a potential therapeutic approach, introducing live microbes or helminth-derived products to restore immune balance. While helminth therapy has shown some promise, significant challenges remain in optimizing clinical trials. Factors such as patient genetics, disease status, helminth species, and the optimal timing and dosage of their products or metabolites must be carefully considered to train the immune system effectively. We aim to discuss how helminths and their products induce trained immunity as prospective to treat inflammatory and autoimmune diseases. The molecular repertoire of helminth excretory/secretory products (ESPs), which includes proteins, peptides, lipids, and RNA-carrying extracellular vesicles (EVs), underscores their potential to modulate innate immune cells and hematopoietic stem cell precursors. Mimicking natural delivery mechanisms like synthetic exosomes could revolutionize EV-based therapies and optimizing production and delivery of ESP will be crucial for their translation into clinical applications. By deciphering and harnessing helminth-derived products’ diverse modes of action, we can unleash their full therapeutic potential and pave the way for innovative treatments.