Single-cell transcriptome analysis identifies a unique tumor cell type producing multiple hormones in ectopic ACTH and CRH secreting pheochromocytoma

  1. Xuebin Zhang
  2. Penghu Lian
  3. Mingming Su
  4. Zhigang Ji
  5. Jianhua Deng
  6. Guoyang Zheng
  7. Wenda Wang
  8. Xinyu Ren
  9. Taijiao Jiang
  10. Peng Zhang  Is a corresponding author
  11. Hanzhong Li  Is a corresponding author
  1. Chinese Academy of Medical Sciences & Peking Union Medical College, China
  2. Capital Medical University, China

Abstract

Ectopic Cushing's syndrome due to ectopic ACTH&CRH-secreting by pheochromocytoma is extremely rare and can be fatal if not properly diagnosed. It remains unclear whether a unique cell type is responsible for multiple hormones secreting. In this work, we performed single-cell RNA sequencing to 3 different anatomic tumor tissues and 1 peritumoral tissue based on a rare case with ectopic ACTH&CRH-secreting pheochromocytoma. And in addition to that, 3 adrenal tumor specimens from common pheochromocytoma and adrenocortical adenomas were also involved in the comparison of tumor cellular heterogeneity. A total of 16 cell types in the tumor microenvironment were identified by unbiased cell clustering of single-cell transcriptomic profiles from all specimens. Notably, we identified a novel multi-functionally chromaffin-like cell type with high expression of both POMC (the precursor of ACTH) and CRH, called ACTH+&CRH+ pheochromocyte. We hypothesized that the molecular mechanism of the rare case harbor Cushing's syndrome is due to the identified novel tumor cell type, that is, the secretion of ACTH had a direct effect on the adrenal gland to produce cortisol, while the secretion of CRH can indirectly stimulate the secretion of ACTH from the anterior pituitary. Besides, a new potential marker (GAL) co-expressed with ACTH and CRH might be involved in the regulation of ACTH secretion. The immunohistochemistry results confirmed its multi-functionally chromaffin-like properties with positive staining for CRH, POMC, ACTH, GAL, TH and CgA. Our findings also proved to some extent the heterogeneity of endothelial and immune microenvironment in different adrenal tumor subtypes.

Data availability

The raw data of scRNA-seq sequencing reads generated in this study were deposited in The National Genomics Data Center (NGDC, https://bigd.big.ac.cn/) under the accession number: PRJCA003766.

Article and author information

Author details

  1. Xuebin Zhang

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Penghu Lian

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Mingming Su

    Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhigang Ji

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianhua Deng

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Guoyang Zheng

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wenda Wang

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xinyu Ren

    Department of Pathology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Taijiao Jiang

    Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Peng Zhang

    Division of Immunotherapy, Institute of Human Virology, Capital Medical University, Beijing, China
    For correspondence
    zhangpengdyx@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6218-1885
  11. Hanzhong Li

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    For correspondence
    lihzh@pumch.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

Chinese Academy of Medical Sciences (2017-I2M-1-001)

  • Hanzhong Li

Chinese Academy of Medical Sciences (2020-I2M-2-003)

  • Taijiao Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Specimen collection was obtained after appropriate research consents (and assents when applicable) and was approved by the Institutional Review Board, Peking Union Medical College Hospital. All information obtained was protected and de-identified. (protocol number: S K431)

Reviewing Editor

  1. Murim Choi, Seoul National University, Republic of Korea

Publication history

  1. Received: March 16, 2021
  2. Accepted: December 13, 2021
  3. Accepted Manuscript published: December 14, 2021 (version 1)
  4. Accepted Manuscript updated: December 15, 2021 (version 2)
  5. Version of Record published: December 31, 2021 (version 3)

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,173
    Page views
  • 186
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xuebin Zhang
  2. Penghu Lian
  3. Mingming Su
  4. Zhigang Ji
  5. Jianhua Deng
  6. Guoyang Zheng
  7. Wenda Wang
  8. Xinyu Ren
  9. Taijiao Jiang
  10. Peng Zhang
  11. Hanzhong Li
(2021)
Single-cell transcriptome analysis identifies a unique tumor cell type producing multiple hormones in ectopic ACTH and CRH secreting pheochromocytoma
eLife 10:e68436.
https://doi.org/10.7554/eLife.68436

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Deeptiman Chatterjee, Caique Almeida Machado Costa ... Wu-Min Deng
    Research Article Updated

    Apicobasal cell polarity loss is a founding event in epithelial–mesenchymal transition and epithelial tumorigenesis, yet how pathological polarity loss links to plasticity remains largely unknown. To understand the mechanisms and mediators regulating plasticity upon polarity loss, we performed single-cell RNA sequencing of Drosophila ovaries, where inducing polarity-gene l(2)gl-knockdown (Lgl-KD) causes invasive multilayering of the follicular epithelia. Analyzing the integrated Lgl-KD and wildtype transcriptomes, we discovered the cells specific to the various discernible phenotypes and characterized the underlying gene expression. A genetic requirement of Keap1-Nrf2 signaling in promoting multilayer formation of Lgl-KD cells was further identified. Ectopic expression of Keap1 increased the volume of delaminated follicle cells that showed enhanced invasive behavior with significant changes to the cytoskeleton. Overall, our findings describe the comprehensive transcriptome of cells within the follicle cell tumor model at the single-cell resolution and identify a previously unappreciated link between Keap1-Nrf2 signaling and cell plasticity at early tumorigenesis.

    1. Cancer Biology
    2. Medicine
    Huan-Huan Chen, Tie-Ning Zhang ... Tao Zhang
    Research Article Updated

    Background:

    Sarcomas comprise approximately 1% of all human malignancies; treatment resistance is one of the major reasons for the poor prognosis of sarcomas. Accumulating evidence suggests that non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs, and circular RNAs, are important molecules involved in the crosstalk between resistance to chemotherapy, targeted therapy, and radiotherapy via various pathways.

    Methods:

    We searched the PubMed (MEDLINE) database for articles regarding sarcoma-associated ncRNAs from inception to August 17, 2022. Studies investigating the roles of host-derived miRNAs, long ncRNAs, and circular RNAs in sarcoma were included. Data relating to the roles of ncRNAs in therapeutic regulation and their applicability as biomarkers for predicting the therapeutic response of sarcomas were extracted. Two independent researchers assessed the quality of the studies using the Würzburg Methodological Quality Score (W-MeQS).

    Results:

    Observational studies revealed the ectopic expression of ncRNAs in sarcoma patients who had different responses to antitumor treatments. Experimental studies have confirmed crosstalk between cellular pathways pertinent to chemotherapy, targeted therapy, and radiotherapy resistance. Of the included studies, W-MeQS scores ranged from 3 to 10 (average score = 5.42). Of the 12 articles that investigated ncRNAs as biomarkers, none included a validation cohort. Selective reporting of the sensitivity, specificity, and receiver operating curves was common.

    Conclusions:

    Although ncRNAs appear to be good candidates as biomarkers for predicting treatment response and therapeutics for sarcoma, their differential expression across tissues complicates their application. Further research regarding their potential for inhibiting or activating these regulatory molecules to reverse treatment resistance may be useful.

    Funding:

    This study’s literature retrieval was supported financially by the 345 Talent Project of Shengjing Hospital of China Medical University (M0949 to Tao Zhang).