Single-cell transcriptome analysis identifies a unique tumor cell type producing multiple hormones in ectopic ACTH and CRH secreting pheochromocytoma

  1. Xuebin Zhang
  2. Penghu Lian
  3. Mingming Su
  4. Zhigang Ji
  5. Jianhua Deng
  6. Guoyang Zheng
  7. Wenda Wang
  8. Xinyu Ren
  9. Taijiao Jiang
  10. Peng Zhang  Is a corresponding author
  11. Hanzhong Li  Is a corresponding author
  1. Chinese Academy of Medical Sciences & Peking Union Medical College, China
  2. Capital Medical University, China

Abstract

Ectopic Cushing's syndrome due to ectopic ACTH&CRH-secreting by pheochromocytoma is extremely rare and can be fatal if not properly diagnosed. It remains unclear whether a unique cell type is responsible for multiple hormones secreting. In this work, we performed single-cell RNA sequencing to 3 different anatomic tumor tissues and 1 peritumoral tissue based on a rare case with ectopic ACTH&CRH-secreting pheochromocytoma. And in addition to that, 3 adrenal tumor specimens from common pheochromocytoma and adrenocortical adenomas were also involved in the comparison of tumor cellular heterogeneity. A total of 16 cell types in the tumor microenvironment were identified by unbiased cell clustering of single-cell transcriptomic profiles from all specimens. Notably, we identified a novel multi-functionally chromaffin-like cell type with high expression of both POMC (the precursor of ACTH) and CRH, called ACTH+&CRH+ pheochromocyte. We hypothesized that the molecular mechanism of the rare case harbor Cushing's syndrome is due to the identified novel tumor cell type, that is, the secretion of ACTH had a direct effect on the adrenal gland to produce cortisol, while the secretion of CRH can indirectly stimulate the secretion of ACTH from the anterior pituitary. Besides, a new potential marker (GAL) co-expressed with ACTH and CRH might be involved in the regulation of ACTH secretion. The immunohistochemistry results confirmed its multi-functionally chromaffin-like properties with positive staining for CRH, POMC, ACTH, GAL, TH and CgA. Our findings also proved to some extent the heterogeneity of endothelial and immune microenvironment in different adrenal tumor subtypes.

Data availability

The raw data of scRNA-seq sequencing reads generated in this study were deposited in The National Genomics Data Center (NGDC, https://bigd.big.ac.cn/) under the accession number: PRJCA003766.

Article and author information

Author details

  1. Xuebin Zhang

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Penghu Lian

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Mingming Su

    Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhigang Ji

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianhua Deng

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Guoyang Zheng

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wenda Wang

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xinyu Ren

    Department of Pathology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Taijiao Jiang

    Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Peng Zhang

    Division of Immunotherapy, Institute of Human Virology, Capital Medical University, Beijing, China
    For correspondence
    zhangpengdyx@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6218-1885
  11. Hanzhong Li

    Department of Urology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    For correspondence
    lihzh@pumch.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

Chinese Academy of Medical Sciences (2017-I2M-1-001)

  • Hanzhong Li

Chinese Academy of Medical Sciences (2020-I2M-2-003)

  • Taijiao Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Specimen collection was obtained after appropriate research consents (and assents when applicable) and was approved by the Institutional Review Board, Peking Union Medical College Hospital. All information obtained was protected and de-identified. (protocol number: S K431)

Reviewing Editor

  1. Murim Choi, Seoul National University, Republic of Korea

Version history

  1. Received: March 16, 2021
  2. Accepted: December 13, 2021
  3. Accepted Manuscript published: December 14, 2021 (version 1)
  4. Accepted Manuscript updated: December 15, 2021 (version 2)
  5. Version of Record published: December 31, 2021 (version 3)

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,587
    Page views
  • 237
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xuebin Zhang
  2. Penghu Lian
  3. Mingming Su
  4. Zhigang Ji
  5. Jianhua Deng
  6. Guoyang Zheng
  7. Wenda Wang
  8. Xinyu Ren
  9. Taijiao Jiang
  10. Peng Zhang
  11. Hanzhong Li
(2021)
Single-cell transcriptome analysis identifies a unique tumor cell type producing multiple hormones in ectopic ACTH and CRH secreting pheochromocytoma
eLife 10:e68436.
https://doi.org/10.7554/eLife.68436

Share this article

https://doi.org/10.7554/eLife.68436

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Pengfei Guo, Rebecca C. Lim ... Hui Zhang
    Research Article

    The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to control the PRC2 activity and hematopoiesis.

    1. Cancer Biology
    Shakur Mohibi, Yanhong Zhang ... Xinbin Chen
    Research Article Updated

    Mammalian ferredoxin 1 and 2 (FDX1/2) belong to an evolutionary conserved family of iron-sulfur cluster containing proteins and act as electron shutters between ferredoxin reductase (FDXR) and numerous proteins involved in critical biological pathways. FDX1 is involved in biogenesis of steroids and bile acids, Vitamin A/D metabolism, and lipoylation of tricarboxylic acid (TCA) cycle enzymes. FDX1 has been extensively characterized biochemically but its role in physiology and lipid metabolism has not been explored. In this study, we generated Fdx1-deficient mice and showed that knockout of both alleles of the Fdx1 gene led to embryonic lethality. We also showed that like Fdxr+/-+/-, Fdx1+/-+/- had a shorter life span and were prone to steatohepatitis. However, unlike Fdxr+/-+/-, Fdx1+/-+/- were not prone to spontaneous tumors. Additionally, we showed that FDX1 deficiency led to lipid droplet accumulation possibly via the ABCA1-SREBP1/2 pathway. Specifically, untargeted lipidomic analysis showed that FDX1 deficiency led to alterations in several classes of lipids, including cholesterol, triacylglycerides, acylcarnitines, ceramides, phospholipids and lysophospholipids. Taken together, our data indicate that FDX1 is essential for mammalian embryonic development and lipid homeostasis at both cellular and organismal levels.