Acid-base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival

  1. Nicolai J Toft
  2. Trine V Axelsen
  3. Helene L Pedersen
  4. Marco Mele
  5. Mark Burton
  6. Eva Balling
  7. Tonje Johansen
  8. Mads Thomassen
  9. Peer M Christiansen
  10. Ebbe Boedtkjer  Is a corresponding author
  1. Aarhus University, Denmark
  2. Regionshospitalet Randers, Denmark
  3. University of Southern Denmark, Denmark

Abstract

Breast cancer heterogeneity in histology and molecular subtype influences metabolic and proliferative activity and hence the acid load on cancer cells. We hypothesized that acid-base transporters and intracellular pH (pHi) dynamics contribute inter-individual variability in breast cancer aggressiveness and prognosis. We show that Na+,HCO3--cotransport and Na+/H+-exchange dominate cellular net acid extrusion in human breast carcinomas. Na+/H+-exchange elevates pHi preferentially in estrogen receptor-negative breast carcinomas, whereas Na+,HCO3--cotransport raises pHi more in invasive lobular than ductal breast carcinomas and in higher malignancy grade breast cancer. HER2-positive breast carcinomas have elevated protein expression of Na+/H+-exchanger NHE1/SLC9A1 and Na+,HCO3--cotransporter NBCn1/SLC4A7. Increased dependency on Na+,HCO3--cotransport associates with severe breast cancer: enlarged CO2/HCO3--dependent rises in pHi predict accelerated cell proliferation; whereas enhanced CO2/HCO3--dependent net acid extrusion, elevated NBCn1 protein expression, and reduced NHE1 protein expression predict lymph node metastasis. Accordingly, we observe reduced survival for patients suffering from Luminal A or Basal-like/triple-negative breast cancer with high SLC4A7 and/or low SLC9A1 mRNA expression. We conclude that the molecular mechanisms of acid-base regulation depend on clinicopathological characteristics of breast cancer patients. NBCn1 expression and dependency on Na+,HCO3--cotransport for pHi regulation, measured in biopsies of human primary breast carcinomas, independently predict proliferative activity, lymph node metastasis, and patient survival.

Data availability

- In order to comply with the ethical approval, we share the human data presented in Figure 1-8 and corresponding Figure Supplements (data on acid-base transport activity, intracellular pH, and protein expression of transporters linked to clinicopathological information) in de-identified form. Following consultation with the legal team at the Regional Committee on Health Research Ethics, we have generated dataset files where restricted information is grouped in intervals each consisting of no less than five individuals. To provide the reader with the best possible data insight, we also show Figure Supplements with more detailed and advanced plots of the data and include the corresponding de-identified dataset.- The meta analyses presented in Figure 9, 10, and corresponding figure supplements (data on RNA expression linked to patient survival) are based on data that have previously been published by other investigators (references 28-34), as detailed in the manuscript and the dataset list.

The following previously published data sets were used

Article and author information

Author details

  1. Nicolai J Toft

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    No competing interests declared.
  2. Trine V Axelsen

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    No competing interests declared.
  3. Helene L Pedersen

    Department of Pathology, Regionshospitalet Randers, Randers, Denmark
    Competing interests
    No competing interests declared.
  4. Marco Mele

    Department of Surgery, Regionshospitalet Randers, Randers, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8156-7804
  5. Mark Burton

    Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
    Competing interests
    No competing interests declared.
  6. Eva Balling

    Department of Surgery, Regionshospitalet Randers, Randers, Denmark
    Competing interests
    No competing interests declared.
  7. Tonje Johansen

    Department of Pathology, Regionshospitalet Randers, Randers, Denmark
    Competing interests
    No competing interests declared.
  8. Mads Thomassen

    Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
    Competing interests
    No competing interests declared.
  9. Peer M Christiansen

    Department of Surgery, Regionshospitalet Randers, Randers, Denmark
    Competing interests
    No competing interests declared.
  10. Ebbe Boedtkjer

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    For correspondence
    eb@biomed.au.dk
    Competing interests
    Ebbe Boedtkjer, is an inventor on patents covering NBCn1 as target for cancer therapy (EP 3271402)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5078-9279

Funding

Sundhed og Sygdom, Det Frie Forskningsråd (7025-00050B)

  • Ebbe Boedtkjer

Novo Nordisk Fonden (NNF18OC0053037)

  • Ebbe Boedtkjer

Danish Cancer Society (R136-A8670)

  • Nicolai J Toft

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Caigang Liu, Shengjing Hospital of China Medical University, China

Ethics

Human subjects: All participants gave written informed consent. The Mid-Jutland regional division of the Danish Committee on Health Research Ethics (M-20100288) and the Danish Data Protection Agency (1-16-02-191-16) approved the procedures for tissue sampling and data handling, respectively.

Version history

  1. Received: March 16, 2021
  2. Accepted: July 2, 2021
  3. Accepted Manuscript published: July 5, 2021 (version 1)
  4. Version of Record published: July 15, 2021 (version 2)
  5. Version of Record updated: February 11, 2022 (version 3)
  6. Version of Record updated: March 3, 2023 (version 4)
  7. Version of Record updated: March 17, 2023 (version 5)

Copyright

© 2021, Toft et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,460
    views
  • 209
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolai J Toft
  2. Trine V Axelsen
  3. Helene L Pedersen
  4. Marco Mele
  5. Mark Burton
  6. Eva Balling
  7. Tonje Johansen
  8. Mads Thomassen
  9. Peer M Christiansen
  10. Ebbe Boedtkjer
(2021)
Acid-base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival
eLife 10:e68447.
https://doi.org/10.7554/eLife.68447

Share this article

https://doi.org/10.7554/eLife.68447

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.