Cis-regulatory variants affect gene expression dynamics in yeast

  1. Ching-Hua Shih
  2. Justin Fay  Is a corresponding author
  1. University of Rochester, United States

Abstract

Evolution of cis-regulatory sequences depends on how they affect gene expression and motivates both the identification and prediction of cis-regulatory variants responsible for expression differences within and between species. While much progress has been made in relating cis-regulatory variants to expression levels, the timing of gene activation and repression may also be important to the evolution of cis-regulatory sequences. We investigated allele-specific expression (ASE) dynamics within and between Saccharomyces species during the diauxic shift and found appreciable cis-acting variation in gene expression dynamics. Within species ASE is associated with intergenic variants, and ASE dynamics are more strongly associated with insertions and deletions than ASE levels. To refine these associations we used a high-throughput reporter assay to test promoter regions and individual variants. Within the subset of regions that recapitulated endogenous expression we identified and characterized cis-regulatory variants that affect expression dynamics. Between species, chimeric promoter regions generate novel patterns and indicate constraints on the evolution of gene expression dynamics. We conclude that changes in cis-regulatory sequences can tune gene expression dynamics and that the interplay between expression dynamics and other aspects expression are relevant to the evolution of cis-regulatory sequences.

Data availability

Genome sequencing and assembly data were deposited into NCBI, see Table S1 and S7 in Supplementary file 1 for accessions. RNA sequencing data were deposited into NCBI's GEO database under GSE165594. Analysis scripts, data and summary files are available at https://doi.org/10.17605/OSF.IO/Y5748.

The following data sets were generated
    1. Shih CH
    2. Fay JC
    (2021) Gene expression dynamics
    Open Science Framework, DOI 10.17605/OSF.IO/Y5748.

Article and author information

Author details

  1. Ching-Hua Shih

    Biology, University of Rochester, ROCHESTER, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Justin Fay

    Biology, University of Rochester, Rochester, United States
    For correspondence
    justin.fay@rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1893-877X

Funding

National Institutes of Health (GM080669)

  • Justin Fay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kevin J Verstrepen, VIB-KU Leuven Center for Microbiology, Belgium

Version history

  1. Received: March 17, 2021
  2. Accepted: August 6, 2021
  3. Accepted Manuscript published: August 9, 2021 (version 1)
  4. Version of Record published: August 16, 2021 (version 2)

Copyright

© 2021, Shih & Fay

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,294
    Page views
  • 195
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ching-Hua Shih
  2. Justin Fay
(2021)
Cis-regulatory variants affect gene expression dynamics in yeast
eLife 10:e68469.
https://doi.org/10.7554/eLife.68469

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Carolina A Martinez-Gutierrez, Josef C Uyeda, Frank O Aylward
    Research Article

    Microbial plankton play a central role in marine biogeochemical cycles, but the timing in which abundant lineages diversified into ocean environments remains unclear. Here, we reconstructed the timeline in which major clades of bacteria and archaea colonized the ocean using a high-resolution benchmarked phylogenetic tree that allows for simultaneous and direct comparison of the ages of multiple divergent lineages. Our findings show that the diversification of the most prevalent marine clades spans throughout a period of 2.2 Ga, with most clades colonizing the ocean during the last 800 million years. The oldest clades – SAR202, SAR324, Ca. Marinimicrobia, and Marine Group II – diversified around the time of the Great Oxidation Event, during which oxygen concentration increased but remained at microaerophilic levels throughout the Mid-Proterozoic, consistent with the prevalence of some clades within these groups in oxygen minimum zones today. We found the diversification of the prevalent heterotrophic marine clades SAR11, SAR116, SAR92, SAR86, and Roseobacter as well as the Marine Group I to occur near to the Neoproterozoic Oxygenation Event (0.8–0.4 Ga). The diversification of these clades is concomitant with an overall increase of oxygen and nutrients in the ocean at this time, as well as the diversification of eukaryotic algae, consistent with the previous hypothesis that the diversification of heterotrophic bacteria is linked to the emergence of large eukaryotic phytoplankton. The youngest clades correspond to the widespread phototrophic clades Prochlorococcus, Synechococcus, and Crocosphaera, whose diversification happened after the Phanerozoic Oxidation Event (0.45–0.4 Ga), in which oxygen concentrations had already reached their modern levels in the atmosphere and the ocean. Our work clarifies the timing at which abundant lineages of bacteria and archaea colonized the ocean, thereby providing key insights into the evolutionary history of lineages that comprise the majority of prokaryotic biomass in the modern ocean.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Zachary Baker, Molly Przeworski, Guy Sella
    Research Article Updated

    In many species, meiotic recombination events tend to occur in narrow intervals of the genome, known as hotspots. In humans and mice, double strand break (DSB) hotspot locations are determined by the DNA-binding specificity of the zinc finger array of the PRDM9 protein, which is rapidly evolving at residues in contact with DNA. Previous models explained this rapid evolution in terms of the need to restore PRDM9 binding sites lost to gene conversion over time, under the assumption that more PRDM9 binding always leads to more DSBs. This assumption, however, does not align with current evidence. Recent experimental work indicates that PRDM9 binding on both homologs facilitates DSB repair, and that the absence of sufficient symmetric binding disrupts meiosis. We therefore consider an alternative hypothesis: that rapid PRDM9 evolution is driven by the need to restore symmetric binding because of its role in coupling DSB formation and efficient repair. To this end, we model the evolution of PRDM9 from first principles: from its binding dynamics to the population genetic processes that govern the evolution of the zinc finger array and its binding sites. We show that the loss of a small number of strong binding sites leads to the use of a greater number of weaker ones, resulting in a sharp reduction in symmetric binding and favoring new PRDM9 alleles that restore the use of a smaller set of strong binding sites. This decrease, in turn, drives rapid PRDM9 evolutionary turnover. Our results therefore suggest that the advantage of new PRDM9 alleles is in limiting the number of binding sites used effectively, rather than in increasing net PRDM9 binding. By extension, our model suggests that the evolutionary advantage of hotspots may have been to increase the efficiency of DSB repair and/or homolog pairing.