Hydrogen sulfide blocks HIV rebound by maintaining mitochondrial bioenergetics and redox homeostasis

  1. Virender Kumar Pal
  2. Ragini Agrawal
  3. Srabanti Rakshit
  4. Pooja Shekar
  5. Diwakar Tumkur Narasimha Murthy
  6. Annapurna Vyakarnam
  7. Amit Singh  Is a corresponding author
  1. Indian Institute of Science, India
  2. Bangalore Medical College and Research Institute, India

Abstract

A fundamental challenge in HIV eradication is to understand how the virus establishes latency, maintains stable cellular reservoirs, and promotes rebound upon interruption of antiretroviral treatment (ART). Here, we discovered an unexpected role of the ubiquitous gasotransmitter hydrogen sulfide (H2S) in HIV latency and reactivation. We show that reactivation of HIV-1 is associated with down-regulation of the key H2S producing enzyme cystathionine-g-lyase (CTH) and reduction in endogenous H2S. Genetic silencing of CTH disrupts redox homeostasis, impairs mitochondrial function, and remodels the transcriptome of latent cells to trigger HIV reactivation. Chemical complementation of CTH activity using a slow-releasing H2S donor, GYY4137, suppressed HIV reactivation and diminished virus replication. Mechanistically, GYY4137 blocked HIV reactivation by inducing the Keap1-Nrf2 pathway, inhibiting NF-kB, and recruiting the epigenetic silencer, YY1, to the HIV promoter. In latently infected CD4+ T cells from ART-suppressed human subjects, GYY4137 in combination with ART prevented viral rebound and improved mitochondrial bioenergetics. Moreover, prolonged exposure to GYY4137 exhibited no adverse influence on proviral content or CD4+ T cell subsets, indicating that diminished viral rebound is due to a loss of transcription rather than a selective loss of infected cells. In summary, this work provides mechanistic insight into H2S-mediated suppression of viral rebound and suggests exploration of H2S donors to maintain HIV in a latent form.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 5.

Article and author information

Author details

  1. Virender Kumar Pal

    Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Ragini Agrawal

    Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Srabanti Rakshit

    CIDR, Indian Institute of Science, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Pooja Shekar

    BMCRI, Bangalore Medical College and Research Institute, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Diwakar Tumkur Narasimha Murthy

    Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Annapurna Vyakarnam

    CIDR, Indian Institute of Science, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Amit Singh

    Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
    For correspondence
    asingh@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6761-1664

Funding

Wellcome trust-DBT India Alliance (IA/S/16/2/502700)

  • Amit Singh

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR13522/COE/34/27/2015,BT/PR29098/Med/29/1324/2018,and BT/HRD/NBA/39/07/2018-19)

  • Amit Singh

Department of Biotechnology, Ministry of Science and Technology, India (22-0905-0006-05-987 436)

  • Amit Singh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Peripheral blood mononuclear cells (PBMCs) were collected from five aviremic HIV‐seropositive subjects on stable suppressive ART. All subjects provided signed informed consent approved by the Indian Institute of Science, and Bangalore Medical College and Research Institute review boards (IHEC No.‐ 3‐14012020).

Copyright

© 2021, Pal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,600
    views
  • 314
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Virender Kumar Pal
  2. Ragini Agrawal
  3. Srabanti Rakshit
  4. Pooja Shekar
  5. Diwakar Tumkur Narasimha Murthy
  6. Annapurna Vyakarnam
  7. Amit Singh
(2021)
Hydrogen sulfide blocks HIV rebound by maintaining mitochondrial bioenergetics and redox homeostasis
eLife 10:e68487.
https://doi.org/10.7554/eLife.68487

Share this article

https://doi.org/10.7554/eLife.68487

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Ting Liu, Xing Shen ... Zhihong Xue
    Research Article

    The interplay between G4s and R-loops are emerging in regulating DNA repair, replication, and transcription. A comprehensive picture of native co-localized G4s and R-loops in living cells is currently lacking. Here, we describe the development of HepG4-seq and an optimized HBD-seq methods, which robustly capture native G4s and R-loops, respectively, in living cells. We successfully employed these methods to establish comprehensive maps of native co-localized G4s and R-loops in human HEK293 cells and mouse embryonic stem cells (mESCs). We discovered that co-localized G4s and R-loops are dynamically altered in a cell type-dependent manner and are largely localized at active promoters and enhancers of transcriptional active genes. We further demonstrated the helicase Dhx9 as a direct and major regulator that modulates the formation and resolution of co-localized G4s and R-loops. Depletion of Dhx9 impaired the self-renewal and differentiation capacities of mESCs by altering the transcription of co-localized G4s and R-loops -associated genes. Taken together, our work established that the endogenous co-localized G4s and R-loops are prevalently persisted in the regulatory regions of active genes and are involved in the transcriptional regulation of their linked genes, opening the door for exploring broader roles of co-localized G4s and R-loops in development and disease.

    1. Biochemistry and Chemical Biology
    Emily L Dearlove, Chatrin Chatrin ... Danny T Huang
    Research Article

    Ubiquitination typically involves covalent linking of ubiquitin (Ub) to a lysine residue on a protein substrate. Recently, new facets of this process have emerged, including Ub modification of non-proteinaceous substrates like ADP-ribose by the DELTEX E3 ligase family. Here, we show that the DELTEX family member DTX3L expands this non-proteinaceous substrate repertoire to include single-stranded DNA and RNA. Although the N-terminal region of DTX3L contains single-stranded nucleic acid binding domains and motifs, the minimal catalytically competent fragment comprises the C-terminal RING and DTC domains (RD). DTX3L-RD catalyses ubiquitination of the 3’-end of single-stranded DNA and RNA, as well as double-stranded DNA with a 3’ overhang of two or more nucleotides. This modification is reversibly cleaved by deubiquitinases. NMR and biochemical analyses reveal that the DTC domain binds single-stranded DNA and facilitates the catalysis of Ub transfer from RING-bound E2-conjugated Ub. Our study unveils the direct ubiquitination of nucleic acids by DTX3L, laying the groundwork for understanding its functional implications.