1. Microbiology and Infectious Disease
  2. Structural Biology and Molecular Biophysics
Download icon

Structural intermediates observed only in intact Escherichia coli indicate a mechanism for TonB-dependent transport

  1. Thushani D Nilaweera
  2. David A Nyenhuis
  3. David S Cafiso  Is a corresponding author
  1. University of Virginia, United States
Research Article
  • Cited 0
  • Views 515
  • Annotations
Cite this article as: eLife 2021;10:e68548 doi: 10.7554/eLife.68548

Abstract

Outer membrane TonB-dependent transporters facilitate the uptake of trace nutrients and carbohydrates in Gram negative bacteria and are essential for pathogenic bacteria and the health of the microbiome. Despite this, their mechanism of transport is still unknown. Here, pulse EPR measurements were made in intact cells on the Escherichia coli vitamin B12 transporter, BtuB. Substrate binding was found to alter the C-terminal region of the core and shift an extracellular substrate binding loop 2 nm towards the periplasm; moreover, this structural transition is regulated by an ionic lock that is broken upon binding of the inner membrane protein TonB. Significantly, this structural transition is not observed when BtuB is reconstituted into phospholipid bilayers. These measurements suggest an alternative to existing models of transport, and they demonstrate the importance of studying outer membrane proteins in their native environment.

Data availability

Raw unprocessed DEER data are available in a compressed folder called "SourceData". The Pymol session file used to produce Fig. 6b is included as a supplementary file.

Article and author information

Author details

  1. Thushani D Nilaweera

    Genetics and Biochemistry Branch, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. David A Nyenhuis

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David S Cafiso

    Chemistry, University of Virginia, Charlottesville, United States
    For correspondence
    dsc0b@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3813-8721

Funding

Office of Extramural Research, National Institutes of Health (NIGMS GM035215)

  • David S Cafiso

Office of Extramural Research, National Institutes of Health (NIGMS S10OD025149)

  • David S Cafiso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Janice L Robertson, Washington University in St Louis, United States

Publication history

  1. Preprint posted: March 18, 2021 (view preprint)
  2. Received: March 18, 2021
  3. Accepted: July 11, 2021
  4. Accepted Manuscript published: July 12, 2021 (version 1)
  5. Accepted Manuscript updated: July 13, 2021 (version 2)
  6. Accepted Manuscript updated: July 30, 2021 (version 3)
  7. Version of Record published: August 5, 2021 (version 4)

Copyright

© 2021, Nilaweera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 515
    Page views
  • 98
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Mohammed Kaplan et al.
    Research Article Updated

    The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs in 13 diderm bacterial species and classified several major ultrastructures: (1) tubes with a uniform diameter (with or without an internal scaffold), (2) tubes with irregular diameter, (3) tubes with a vesicular dilation at their tip, (4) pearling tubes, (5) connected chains of vesicles (with or without neck-like connectors), (6) budding vesicles and nanopods. We also identified several protein complexes associated with these MEs and MVs which were distributed either randomly or exclusively at the tip. These complexes include a secretin-like structure and a novel crown-shaped structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize the diversity of bacterial membrane projections and lays the groundwork for future research in this field.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Michael L Wood et al.
    Research Article

    Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally-integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.