Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus

  1. Sebastian Strauss
  2. Julia Acker
  3. Guido Papa
  4. Daniel Desiró
  5. Florian Schueder
  6. Alexander Borodavka  Is a corresponding author
  7. Ralf Jungmann  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. University of Cambridge, United Kingdom
  3. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

Rotaviruses transcribe eleven distinct RNAs that must be co-packaged prior to their replication to make an infectious virion. During infection, nontranslating rotavirus transcripts accumulate in cytoplasmic protein-RNA granules known as viroplasms that support segmented genome assembly and replication via a poorly understood mechanism. Here we analysed the RV transcriptome by combining DNA-barcoded smFISH of rotavirus-infected cells. Rotavirus RNA stoichiometry in viroplasms appears to be distinct from the cytoplasmic transcript distribution, with the largest transcript being the most enriched in viroplasms, suggesting a selective RNA enrichment mechanism. While all eleven types of transcripts accumulate in viroplasms, their stoichiometry significantly varied between individual viroplasms. Accumulation of transcripts requires the presence of 3' untranslated terminal regions and viroplasmic localisation of the viral polymerase VP1, consistent with the observed lack of polyadenylated transcripts in viroplasms. Our observations reveal similarities between viroplasms and other cytoplasmic RNP granules and identify viroplasmic proteins as drivers of viral RNA assembly during viroplasm formation.

Data availability

RNA-Seq data have been uploaded, and the SRA Illumina reads data are available under the accession number PRJNA702157 (SRR13723918, RNA-Seq of Bovine Rotavirus A: Strain RF).SRA Metadata:BioProject: PRJNA702157 (Bovine rotavirus strain RF transcriptome of MA104 cells)BioSample: SAMN17926863 (Viral sample from Bovine rotavirus A)SRA: SRR13723918 (RNA-Seq of Bovine Rotavirus A: Strain RF)All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

The following data sets were generated
The following previously published data sets were used
    1. Andrew Yates et al
    (2020) ENSEMBL 2020
    http://ftp.ensembl.org/pub/release-102/.

Article and author information

Author details

  1. Sebastian Strauss

    Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Julia Acker

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Guido Papa

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5215-0014
  4. Daniel Desiró

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Florian Schueder

    Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3412-5066
  6. Alexander Borodavka

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ab2677@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5729-2687
  7. Ralf Jungmann

    Max Planck Institute of Biochemistry, Munich, Germany
    For correspondence
    jungmann@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4607-3312

Funding

Wellcome Trust (213437/Z/18/Z)

  • Alexander Borodavka

Deutsche Forschungsgemeinschaft (SFB1032)

  • Ralf Jungmann

European Research Council (MolMap 680241)

  • Ralf Jungmann

Max Planck Institute for Biochemistry

  • Sebastian Strauss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Miles P Davenport, University of New South Wales, Australia

Version history

  1. Preprint posted: March 22, 2021 (view preprint)
  2. Received: March 23, 2021
  3. Accepted: January 26, 2023
  4. Accepted Manuscript published: January 26, 2023 (version 1)
  5. Version of Record published: February 13, 2023 (version 2)
  6. Version of Record updated: April 17, 2023 (version 3)

Copyright

© 2023, Strauss et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,789
    views
  • 321
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Strauss
  2. Julia Acker
  3. Guido Papa
  4. Daniel Desiró
  5. Florian Schueder
  6. Alexander Borodavka
  7. Ralf Jungmann
(2023)
Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus
eLife 12:e68670.
https://doi.org/10.7554/eLife.68670

Share this article

https://doi.org/10.7554/eLife.68670

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.