Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus

  1. Sebastian Strauss
  2. Julia Acker
  3. Guido Papa
  4. Daniel Desirò
  5. Florian Schueder
  6. Alexander Borodavka  Is a corresponding author
  7. Ralf Jungmann  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. Department of Biochemistry, University of Cambridge, United Kingdom
  3. Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology, Italy
  4. Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Germany
10 figures, 1 table and 3 additional files

Figures

Figure 1 with 2 supplements
RNA ccumulation during Rotavirus infection.

(a) Experimental design for detecting EGFP-tagged viroplasms during early infection (3–5 hpi) stages. (b) Schematics of the FISH probe design for detecting all 11 RV transcripts. A pooled set of 3–4 …

Figure 1—source data 1

Pearson’s correlation coefficients (PCCs) of colocalising NSP5-EGFP-tagged viral factories and RV transcripts.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig1-data1-v2.xlsx
Figure 1—source data 2

Signal intensity distribution histograms for GAPDH transcripts and RV transcript foci.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig1-data2-v2.zip
Figure 1—figure supplement 1
smFISH of GAPDH mRNA and RV transcripts.

GAPDH mRNA red, (a) and RV transcripts yellow, (b) imaged using two distinct sets of FISH probes targeting GAPDH mRNA (Quasar 670 dye-labelled probes) and RV transcripts (Quasar 570 dye-labelled …

Figure 1—figure supplement 2
Viroplasms accumulate RV transcripts but not polyadenylated mRNAs.

FISH visualisation of polyadenylated transcripts (oligo (dT)30-ATTO647N probes, see Methods, red signal) and RV transcripts (Seg4, yellow) at 4 hpi. NSP5-EGFP-labelled viroplasms contain RV …

Figure 2 with 2 supplements
Segment-specific transcript accumulation during Rotavirus infection.

(a) smFISH of RV transcripts at early infection time points (2–6 hpi) using segment-specific probes. Two sets of 48 gene-specific probes were designed for each Seg3 (magenta, Quasar570) and Seg4 …

Figure 2—source data 1

Colocalisation of Seg3 and Seg4 transcripts.

Pearson’s correlation coefficients (PCCs) of colocalising Seg3 and Seg4 transcripts.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig2-data1-v2.csv
Figure 2—source data 2

Seg4/EGFP and Seg3 RNA signal intensities in RV-infected cells at 4 HPI.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig2-data2-v2.zip
Figure 2—source data 3

Raw signal intensity distributions (counts) of diffraction-limited smFISH-detected spots were derived for Seg3 (Quasar 670 dye-labelled probes) and Seg4 (Quasar 570 dye-labelled probes) transcripts at 2 and 4 hpi.

Each spot was detected after applying a constrained deconvolution algorithm (see Methods).

https://cdn.elifesciences.org/articles/68670/elife-68670-fig2-data3-v2.xlsx
Figure 2—source data 4

Integrated signal intensities of Seg3, Seg4 transcripts and NSP5-EGFP-tagged viral condensates at different infection time points.

Integrated signals were calculated for single cells separately, N=24 (2 hpi), N=21 (4 hpi), N=30 (6 hpi).

https://cdn.elifesciences.org/articles/68670/elife-68670-fig2-data4-v2.zip
Figure 2—source data 5

Pearson’s correlation coefficients (PCCs) calculated for a single cell.

N=37 (2 hpi), N=62 (4 hpi), N=51 (6 hpi).

https://cdn.elifesciences.org/articles/68670/elife-68670-fig2-data5-v2.xlsx
Figure 2—source data 6

Seg4/EGFP and Seg3 RNA signal intensities in RV-infected cells at 6 hpi.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig2-data6-v2.txt
Figure 2—source data 7

Integrated intensities for Seg4 RNA and Seg3 RNA for shNSP2 and WT MA104 cells.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig2-data7-v2.xlsx
Figure 2—source data 8

Western blot of NSP2 from RV-infected cells (WT MA104 and NSP2-specific shRNA-expressing MA104 cells).

MA104 cells stably expressing shRNA targetting NSP2 transcripts were infected at MOI = 1, and cell lysates were analysed for NSP2 expression by western blotting at 8 hpi.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig2-data8-v2.zip
Figure 2—figure supplement 1
Analysis of Seg3 and Seg4 transcript accumulation and localisation in RV-infected cells.

(a) Signal intensity distributions of Seg3 and Seg4 transcript foci at 2 hpi and 4 hpi. Raw signal intensity distributions (counts) of smFISH-detected spots were derived for Seg3 and Seg4 …

Figure 2—figure supplement 2
NSP2 knockdown in MA104 cells results in the apparent loss of RV RNA clustering.

(a) Wild-type MA104 cells infected with RV (MOI = 1) at 6 hpi, with a schematic showing Seg3 and Seg4 RNA clustering. (b) MA104 cells expressing shRNAs that target NSP2 (Methods) were infected with …

DNA-PAINT analysis of the RV RNA oligomerisation.

(a) Schematics of DNA-PAINT imaging of RV transcripts. RNA hybridisation is used to install unique DNA ‘docking’ P1 strands for Seg3 RNA targets. These P1 sequences bind to complementary …

Figure 3—source data 1

The apparent kon value for RNA structures detected at 2, 4, and 6 hpi.

(e) Unimodal distribution of kon values calculated for single Seg3 transcripts detected at 2 hpi. The resulting average kon value calculated from a Gaussian fit is 10–5 (Ms)–1, corresponding to a single Seg3 transcript. (f) Estimated numbers of Seg3 transcripts (mean ± SD) at 4 hpi and 6 hpi are 24±12 (x̃=21) and 53±36 (x̃=42), respectively. N=245 (2 hpi), N=515 (4 hpi), N=1181 (6 hpi). Scale bars, 5 µm (b), 500 nm (c).

https://cdn.elifesciences.org/articles/68670/elife-68670-fig3-data1-v2.xlsx
Figure 4 with 1 supplement
Universal DNA exchange-smFISH approach for single-cell imaging of the RV transcriptome.

(a) Schematics of the Universal DNA Exchange-smFISH approach (UDEx-FISH). FISH probes targeting different RNA segments are extended with 12 nucleotide-long orthogonal DNA sequences A1-An (DNA …

Figure 4—source data 1

The integrated signal intensity after each successive round of imager dissociation and re-association.

Each image plane for each channel was recorded with the same image acquisition parameters.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig4-data1-v2.xlsx
Figure 4—figure supplement 1
Validation of the UDEx-FISH approach in RV-infected MA104 cells.

(a) Washing and labelling efficiencies of smFISH probes with orthogonal DNA handles designed for Segments 1–9. After each wash step, no residual RNA signal was detected for each segment tested in …

Figure 5 with 1 supplement
Single-cell analysis of the RV transcriptome.

(a) In situ analysis of the RV transcriptome at 6 hpi. Scale bar, 20 µm. (b) Zoomed-in images of the highlighted regions containing viroplasms and 11 distinct RNA targets. Scale bar: 5 µm. (b) The …

Figure 5—source data 1

Relative fractions of individual RV transcripts in the RV transcriptome at 6 hpi (Seg1-Seg11).

https://cdn.elifesciences.org/articles/68670/elife-68670-fig5-data1-v2.txt
Figure 5—source data 2

Single-cell analysis of the relative fractions of each segment-specific transcript (N=15 cells) estimated from the UDEx-FISH images data.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig5-data2-v2.zip
Figure 5—source data 3

Relative abundance of individual transcripts in viroplasms (N=21) estimated by UDEx-FISH.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig5-data3-v2.zip
Figure 5—source data 4

Quantitative comparison of the RV transcriptome estimated by UDEx-FISH and RNA-Seq at 6 hpi.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig5-data4-v2.zip
Figure 5—source data 5

Integrated signal intensities for individual viroplasm-localized RV transcripts used for correlation analysis of the RV RNA stoichiometry in viroplasms.

https://cdn.elifesciences.org/articles/68670/elife-68670-fig5-data5-v2.xlsx
Figure 5—figure supplement 1
Quantification of transcripts by UDEx-FISH.

(a) UDEx-FISH and RNA-Seq quantitation of RV transcripts at 6 hpi (MA104 cells, as described in Methods). Relative fractions of RV transcripts quantified by RNA-Seq (e.g. mean values shown in Figure …

3’ UTR is required for RV transcript localisation to viroplasms.

(a) Schematics of the EGFP transcript construct containing the EGFP-coding sequence flanked by the 5’UTR and 3’UTR sequences derived from Seg1 RNA (5’UTR-EGFP-3’UTR) or only 3’UTR sequence (denoted …

3’ UTRs and the viral polymerase are required for RV transcript localisation.

(a) Polyadenylated RV mRNAs coding EGFP do not partition to viroplasms. Top - experimental design of the smFISH probes to target RV mRNAs coding EGFP in cells infected with the wild-type rotavirus. …

A proposed model of viral transcript partitioning into viroplasms.

RV transcripts (for clarity, only 3 out of 11 distinct transcripts are shown) associate with viral RNA-binding proteins NSP2 (cyan doughnut-like octamers), as well as the RV RNA-dependent RNA …

Author response image 1
Author response image 2

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Cell line
(Chlorocebus aethiops)
MA104 Clone 1ATCCATCC CRL-2378.1;
RRID:CVCL_3845
Stable cell line
Cell line
(Chlorocebus aethiops)
MA104-NSP5-EGFPCells obtained from Dr. O. Burrone
and G. Papa, ICGEB, Trieste, Italy
https://doi.org/10.1128/JVI.01110-19Stable cell line
Cell line
(Chlorocebus aethiops)
MA104-shRNA-NSP2This manuscriptMA104-shRNA-NSP2Made by transfection with pPB[shRNA]-EGFP:T2A:Puro-U6 plasmid
Cell line
(Chlorocebus aethiops)
MA104-NSP2-mCherryGeiger et al., 2021https://doi.org/10.15252/embj.2021107711Stable cell line
Strain, strain background
(Group A rotavirus)
Bovine rotavirus group A, strain RF [G6P6(1)]Dr Ulrich Desselberger,
University of Cambridge, UK
https://doi.org/10.1371/journal.pone.007432
Strain, strain background
(Group A rotavirus)
Simian rotavirus group A, strain SA11/tsC mutantDr Sarah McDonald Esstman,
Wake Forest University, USA
https://doi.org/10.1016/j.virusres.2021.198488
Sequence-based reagentsFISH probesIntegrated DNA TechnologiesRNA FISH DNA probesSequences listed in Supplementary file 1
AntibodyGoat polyclonal, HRP-conjugated, anti-guinea pigThermoFisherA18775,
RRID:AB_2535552
1:10,000 dilution used for Western Blotting
AntibodyAnti-NSP2 (polyclonal, anti-guinea pig)Dr. O. Burrone, ICGEB, Trieste,
Italy; Papa et al., 2019
https://doi.org/10.1128/JVI.01110-191:1,000 dilution used for Western Blotting
Sequence-based reagentsFISH Probes, fluorescently labelled
Seg3RF-Q670
Seg4RF-Q570
GAPDH-Q670
Comb-Q570
For_UTR
Rev_UTR
Rev_dUTR
LGC Biosearch TechnologiesSeg3RF-Q670
Seg4RF-Q570
GAPDH-Q670
Comb-Q570
Sequences provided in the Supplementary file 1
OtherStellaris RNA FISH Hybridization BufferLGC Biosearch TechnologiesSMF-HB1-10
Recombinant DNA reagentpPB[shRNA]-EGFP:T2A:Puro-U6VectorBuilder https://en.vectorbuilder.compPB[shRNA]-EGFP:T2A:Puro-U6Sequence provided in Supplementary file 1
Recombinant DNA reagentpCMV-HyPBaseDr. O.Burrone, ICGEB, Trieste,
Italy; Papa et al., 2019
https://doi.org/10.1128/JVI.01110-19
Recombinant DNA reagentpT7-NSP3-EGFPDr. O.Burrone, ICGEB, Trieste,
Italy; Papa et al., 2019
https://doi.org/10.1128/JVI.01110-19
Commercial assay or kitNEBNEXT rRNA
Depletion kit
New England BiolabsE6350SMouse/Rat/Human species
Commercial assay or kitFaustovirus Capping EnzymeNew England BiolabsM2081S
Commercial assay or kitmRNA Cap 2´-O-methyltransferaseNew England BiolabsM0366
OtherLipofectamine 3000InvitrogenL3000001
Commercial assay or kitMycoSPYBiontex Laboratories, GermanyM030-050PCR detection of Mycoplasma sp.
Commercial assay or kitNEBNEXT Ultra II FS DNA Library Prep kitNew England BiolabsE7805S
Commercial assay or kitRNA extraction kit, RNEasyQiagen74034
OtherSuperScript II reverse transcriptaseInvitrogen18064014
Commercial assay or kitHighScribe T7 kitNew England BiolabsE2040S
OtherDAPI stainInvitrogenD1306
OtherAtto647N-Oligo(dT30)Integrated DNA
Technologies
https://doi.org/10.1016/j.molcel.2017.10.015
Software, algorithmOriginProOriginLabRRID:SCR_014212
Software, algorithmIcy(http://icy.bioimageanalysis.org/)RRID:SCR_010587Colocalisation analysis
Software, algorithmPicassoDeveloped in-
house (Kowalewski, 2023) https://github.com/jungmannlab/picasso
Schnitzbauer et al.,
Nat. Protoc. 12, 1198–1228 (2017).
Software, algorithmStellaris DesignerLGC Biosearch Technologieshttps://www.biosearchtech.com/stellaris-designerRNA FISH probe designer
Software, algorithmSalmonhttps://github.com/COMBINE-lab/salmon (COMBINE lab, 2022)Patro, R. et al., Nat.
Methods
14, 417–419 (2017).

Additional files

Supplementary file 1

GenBank IDs and sequences of the DNA oligonucleotides used in the study.

https://cdn.elifesciences.org/articles/68670/elife-68670-supp1-v2.xlsx
Supplementary file 2

RNA-Seq transcriptome analysis of RV-infected MA104 cells at 6 hpi (RVA strain RF).

https://cdn.elifesciences.org/articles/68670/elife-68670-supp2-v2.xlsx
Transparent reporting form
https://cdn.elifesciences.org/articles/68670/elife-68670-transrepform1-v2.docx

Download links