Paraxial mesoderm organoids model development of human somites

  1. Christoph Budjan
  2. Shichen Liu
  3. Adrian Ranga
  4. Senjuti Gayen
  5. Olivier Pourquié
  6. Sahand Hormoz  Is a corresponding author
  1. Dana-Farber Cancer Institute, United States
  2. KU Leuven, Belgium
  3. Harvard Medical School, United States

Abstract

During the development of the vertebrate embryo, segmented structures called somites are periodically formed from the presomitic mesoderm (PSM), and give rise to the vertebral column. While somite formation has been studied in several animal models, it is less clear how well this process is conserved in humans. Recent progress has made it possible to study aspects of human paraxial mesoderm development such as the human segmentation clock in vitro using human pluripotent stem cells (hPSCs), however, somite formation has not been observed in these monolayer cultures. Here, we describe the generation of human paraxial mesoderm (PM) organoids from hPSCs (termed Somitoids), which recapitulate the molecular, morphological and functional features of paraxial mesoderm development, including formation of somite-like structures in vitro. Using a quantitative image-based screen, we identify critical parameters such as initial cell number and signaling modulations that reproducibly yielded formation of somite-like structures in our organoid system. In addition, using single-cell RNA sequencing and 3D imaging, we show that PM organoids both transcriptionally and morphologically resemble their in vivo counterparts and can be differentiated into somite derivatives. Our organoid system is reproducible and scalable, allowing for the systematic and quantitative analysis of human spinal cord development and disease in vitro.

Data availability

Sequencing data has been deposited in GEO under accession code GSE194214; All data used to generate the figures are included in the manuscript as Source Data files

The following data sets were generated

Article and author information

Author details

  1. Christoph Budjan

    Department of Data Sciences, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shichen Liu

    Department of Data Sciences, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Adrian Ranga

    KU Leuven, KU Leuven, Department of Mechanical Engineering, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Senjuti Gayen

    Department of Data Sciences, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Olivier Pourquié

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sahand Hormoz

    Department of Genetics, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    sahand_hormoz@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4384-4428

Funding

National Institutes of Health (P01GM099117)

  • Christoph Budjan
  • Sahand Hormoz

National Heart, Lung, and Blood Institute (R01HL158269)

  • Christoph Budjan
  • Sahand Hormoz

Chan Zuckerberg Initiative (2018-183143)

  • Christoph Budjan
  • Sahand Hormoz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Version history

  1. Preprint posted: March 22, 2021 (view preprint)
  2. Received: March 30, 2021
  3. Accepted: January 27, 2022
  4. Accepted Manuscript published: January 28, 2022 (version 1)
  5. Version of Record published: March 9, 2022 (version 2)

Copyright

© 2022, Budjan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,247
    Page views
  • 551
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christoph Budjan
  2. Shichen Liu
  3. Adrian Ranga
  4. Senjuti Gayen
  5. Olivier Pourquié
  6. Sahand Hormoz
(2022)
Paraxial mesoderm organoids model development of human somites
eLife 11:e68925.
https://doi.org/10.7554/eLife.68925

Share this article

https://doi.org/10.7554/eLife.68925

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article Updated

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.