An open label randomized controlled trial of tamoxifen combined with amphotericin B and fluconazole for cryptococcal meningitis

  1. Nguyen Thi Thuy Ngan
  2. Nhat Thanh Hoang Le
  3. Nguyen Ngo Vi Vi
  4. Ninh Thi Thanh Van
  5. Nguyen Thi Hoang Mai
  6. Duong Van Anh
  7. Phan Hai Trieu
  8. Nguyen Phu Huong Lan
  9. Nguyen Hoan Phu
  10. Nguyen VV Chau
  11. David G Lalloo
  12. William Hope
  13. Justin Beardsley
  14. Nicholas J White
  15. Ronald Geskus
  16. Guy E Thwaites
  17. Damian Krysan
  18. Luong Thi Hue Tai
  19. Evelyne Kestelyn
  20. Tran Quang Binh
  21. Le Quoc Hung
  22. Nguyen Le Nhu Tung
  23. Jeremy N Day  Is a corresponding author
  1. Cho Ray Hospital, Viet Nam
  2. Oxford University Clinical Research Unit
  3. Hospital for Tropical Diseases, Viet Nam
  4. Liverpool School of Tropical Medicine, United Kingdom
  5. Liverpool University, United Kingdom
  6. University of Sydney, Australia
  7. Mahidol Oxford Tropical Medicine Research Unit, Thailand
  8. University of Iowa, United States

Abstract

Background: Cryptococcal meningitis has high mortality. Flucytosine is a key treatment but is expensive and rarely available. The anti-cancer agent tamoxifen has synergistic anti-cryptococcal activity with amphotericin in vitro. It is off-patent, cheap, and widely available. We performed a trial to determine its therapeutic potential.

Methods:Open label randomized controlled trial. Participants received standard care - amphotericin combined with fluconazole for the first two weeks - or standard care plus tamoxifen 300mg/day. The primary end point was Early Fungicidal Activity (EFA) - the rate of yeast clearance from cerebrospinal fluid (CSF). Trial registration https://clinicaltrials.gov/ct2/show/NCT03112031 .

Results: 50 patients were enrolled, (median age 34 years, 35 male). Tamoxifen had no effect on EFA (- 0.48log10 colony-forming units/mL/CSF control arm versus -0.49 tamoxifen arm, difference - 0.005log10CFU/ml/day, 95%CI: -0.16, 0.15, P=0.95). Tamoxifen caused QTc prolongation.

Conclusion: High dose tamoxifen does not increase the clearance rate of Cryptococcus from CSF. Novel, affordable therapies are needed.

Funding:The trial was funded through the Wellcome Trust Asia Programme Vietnam Core Grant 106680 and a Wellcome Trust Intermediate Fellowship to JND grant number WT097147MA.

Data availability

The clinical trial has been conducted in Vietnam under the Ministry of Health and local Ethical Committee approvals. Requests to share the clinical data underlying the trial have to be acknowledged by the local Ethical Committee (and therefore we cannot hand over the data repository or management to an external party). The original de-identified clinical data underlying the study are available by emailing the OUCRU Data Access Committee at DAC@oucru.org or ekestelyn@oucru.org (Head of the Clinical Trials Unit and Data Access Committee Chair). The review procedures (the data sharing policy and the data request form) are available on the OUCRU website at http://www.oucru.org/data-sharing/The code for the study analysis is freely available at https://doi.org/10.5287/bodleian:XmeOzdR8z

The following data sets were generated

Article and author information

Author details

  1. Nguyen Thi Thuy Ngan

    Department of Tropical Medicine, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  2. Nhat Thanh Hoang Le

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
  3. Nguyen Ngo Vi Vi

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
  4. Ninh Thi Thanh Van

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
  5. Nguyen Thi Hoang Mai

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
  6. Duong Van Anh

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
  7. Phan Hai Trieu

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
  8. Nguyen Phu Huong Lan

    Department of Microbiology, Hospital for Tropical Diseases, Ho Chi Minh CIty, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  9. Nguyen Hoan Phu

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
  10. Nguyen VV Chau

    Department of Microbiology, Hospital for Tropical Diseases, Ho Chi Minh CIty, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  11. David G Lalloo

    Director, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. William Hope

    Centre of Excellence in Infectious Disease Research, Liverpool University, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Justin Beardsley

    Marie Bashir Institute, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Nicholas J White

    Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1897-1978
  15. Ronald Geskus

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
  16. Guy E Thwaites

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2858-2087
  17. Damian Krysan

    University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Luong Thi Hue Tai

    Infectious Diseases, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  19. Evelyne Kestelyn

    Oxford University Clinical Research Unit
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5728-0918
  20. Tran Quang Binh

    Department of Tropical Medicine, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  21. Le Quoc Hung

    Department of Tropical Medicine, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  22. Nguyen Le Nhu Tung

    Infectious Diseases, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  23. Jeremy N Day

    Oxford University Clinical Research Unit
    For correspondence
    jday@oucru.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7843-6280

Funding

Wellcome Trust (Wellcome Trust Asia Programme Vietnam Core Grant 106680)

  • Guy E Thwaites

Wellcome Trust (WT097147MA)

  • Jeremy N Day

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was approved by the Ethical Review Committees of the Hospital for Tropical Diseases, Cho Ray Hospital, and the Vietnamese Ministry of Health, and by the Oxford University Tropical Research Ethics Committee. A trial steering committee with 2 independent members oversaw the running of the trial, and an independent data and safety monitoring committee oversaw trial safety. The first safety analysis was performed after the first 20 patients had reached the primary endpoint. The funding bodies and drug manufacturers played no role in the study design, implementation, analysis, or manuscript preparation. All the authors made the decision to submit the manuscript for publication and vouch for the accuracy and completeness of the data and analyses presented. The trial was registered at https://clinicaltrials.gov/ct2/show/NCT03112031.

Copyright

© 2021, Ngan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,235
    views
  • 160
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nguyen Thi Thuy Ngan
  2. Nhat Thanh Hoang Le
  3. Nguyen Ngo Vi Vi
  4. Ninh Thi Thanh Van
  5. Nguyen Thi Hoang Mai
  6. Duong Van Anh
  7. Phan Hai Trieu
  8. Nguyen Phu Huong Lan
  9. Nguyen Hoan Phu
  10. Nguyen VV Chau
  11. David G Lalloo
  12. William Hope
  13. Justin Beardsley
  14. Nicholas J White
  15. Ronald Geskus
  16. Guy E Thwaites
  17. Damian Krysan
  18. Luong Thi Hue Tai
  19. Evelyne Kestelyn
  20. Tran Quang Binh
  21. Le Quoc Hung
  22. Nguyen Le Nhu Tung
  23. Jeremy N Day
(2021)
An open label randomized controlled trial of tamoxifen combined with amphotericin B and fluconazole for cryptococcal meningitis
eLife 10:e68929.
https://doi.org/10.7554/eLife.68929

Share this article

https://doi.org/10.7554/eLife.68929

Further reading

    1. Medicine
    2. Neuroscience
    Jie Zhang, Jianguo Cheng
    Insight

    A complex extracted from the amniotic membrane in humans reduces post-surgical pain in mice by directly inhibiting pain-sensing neurons.

    1. Medicine
    2. Neuroscience
    Jörn Lötsch, Khayal Gasimli ... Marco Sisignano
    Research Article

    Background:

    Chemotherapy-induced peripheral neuropathy (CIPN) is a serious therapy-limiting side effect of commonly used anticancer drugs. Previous studies suggest that lipids may play a role in CIPN. Therefore, the present study aimed to identify the particular types of lipids that are regulated as a consequence of paclitaxel administration and may be associated with the occurrence of post-therapeutic neuropathy.

    Methods:

    High-resolution mass spectrometry lipidomics was applied to quantify d=255 different lipid mediators in the blood of n=31 patients drawn before and after paclitaxel therapy for breast cancer treatment. A variety of supervised statistical and machine-learning methods was applied to identify lipids that were regulated during paclitaxel therapy or differed among patients with and without post-therapeutic neuropathy.

    Results:

    Twenty-seven lipids were identified that carried relevant information to train machine learning algorithms to identify, in new cases, whether a blood sample was drawn before or after paclitaxel therapy with a median balanced accuracy of up to 90%. One of the top hits, sphinganine-1-phosphate (SA1P), was found to induce calcium transients in sensory neurons via the transient receptor potential vanilloid 1 (TRPV1) channel and sphingosine-1-phosphate receptors.SA1P also showed different blood concentrations between patients with and without neuropathy.

    Conclusions:

    Present findings suggest a role for sphinganine-1-phosphate in paclitaxel-induced biological changes associated with neuropathic side effects. The identified SA1P, through its receptors, may provide a potential drug target for co-therapy with paclitaxel to reduce one of its major and therapy-limiting side effects.

    Funding:

    This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG, Grants SFB1039 A09 and Z01) and by the Fraunhofer Foundation Project: Neuropathic Pain as well as the Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD). This work was also supported by the Leistungszentrum Innovative Therapeutics (TheraNova) funded by the Fraunhofer Society and the Hessian Ministry of Science and Arts. Jörn Lötsch was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1).